Phase Diagrams Liquid a b Anorthite + Liquid T C Diopside + Anorthite

Slides:



Advertisements
Similar presentations
Phase Equilibrium At a constant pressure simple compounds (like ice) melt at a single temperature More complex compounds (like silicate magmas) have very.
Advertisements

Exsolution and Phase Diagrams Lecture 11. Alkali Feldspar Exsolution ‘Microcline’ - an alkali feldspar in which Na- and K-rich bands have formed perpendicular.
Evolution of magmas 1- Fractional crystallization: minerals formed.
Last time Your text, p. 185, suggests the following reactions for transitions in the upper mantle: Your text, p. 185, suggests the following reactions.
1 Binary Phase Diagrams GLY 4200 Fall, Binary Diagrams Binary diagrams have two components We therefore usually choose to plot both T (temperature)
Evolution of Igneous Rocks. Simple Eutectic Two components that don’t mix in the solid state One or the other begins to form as melt cools When temperature.
Phase Equilibria.
Crystal-Melt Equilibria in Magmatic Systems Learning Objectives: –How are crystal-melt equilibria displayed graphically as phase diagrams? –What are the.
Phase Equilibria in Silicate Systems Intro. Petrol. EPSC-212, Francis-13.
Class 7. Mantle Melting and Phase Diagrams William Wilcock OCEAN/ESS 410.
Chapter 6 Interpretation of Phase Diagrams Phase diagrams summarize in graphical form the ranges of temperature (or pressure) and composition over which.
Lecture 7 (9/27/2006) Crystal Chemistry Part 6: Phase Diagrams.
C = 3: Ternary Systems: Example 1: Ternary Eutectic Di - An - Fo
Distillation l l Start with a partially fermented product (containing some EtOH) l l Through a process of heating, vapor production, and condensation,
Phase diagram Need to represent how mineral reactions at equilibrium vary with P and T.
Readings: Winter Chapter 6
Phase Equilibrium At a constant pressure simple compounds (like ice) melt at a single temperature More complex compounds (like silicate magmas) have very.
Eutectic and Peritectic Systems
Trace Element Variation Reading: Winter Chapter, pp
Phase Equilibrium. Makaopuhi Lava Lake Magma samples recovered from various depths beneath solid crust From Wright and Okamura, (1977) USGS Prof. Paper,
Readings: Winter Chapter 7
Chapter 5.1 – Igneous Rocks Magma – molten rock below Earth’s surface Lava – magma that flows out onto the surface Igneous rocks – rocks that form when.
Mineral Stability What controls when and where a particular mineral forms? Commonly referred to as “Rock cycle” Rock cycle: Mineralogical changes that.
C = 3: Ternary Systems: Example 1: Ternary Eutectic Di - An - Fo
Solid solutions Example: Olivine: (Mg,Fe) 2 SiO 4 two endmembers of similar crystal form and structure: Forsterite: Mg 2 SiO 4 and Fayalite: Fe 2 SiO 4.
G EOL 5310 A DVANCED I GNEOUS AND M ETAMORPHIC P ETROLOGY Phase Diagrams October 26, 2009.
(Earth Science Teachers’ Association)
The Phase Rule and its application. Thermodynamics A system: Some portion of the universe that you wish to study The surroundings: The adjacent part of.
Lab 3. Binary Phase Diagrams. Binary Peritectic System Peritectic point - The point on a phase diagram where a reaction takes place between a previously.
Layered Igneous Intrusions
Geol 2312 Igneous and Metamorphic Petrology
PHASE EQUILIBRIA. Ternary Systems Types:  (Liquid –Vapor) ternary systems  (Liquid – Solid ) ternary systems.
The Phase Rule and its application
1. Binary and ternary phase diagrams; melting of the mantle
Fo Liquid EnSiO 2 X Forsterite + Enstatite Enstatite + Silica Enstatite + Liquid Forsterite + Liquid Temperature P = 1 atm 1. Cool liquid X to liquidus;
Reaction Series and Melting Behavior GLY Spring, 2016
Hot Under the Collar (part III) Phase Diagrams
G EOL 2312 I GNEOUS AND M ETAMORPHIC P ETROLOGY Lecture 6 Phase Diagrams for One- and Two-Component Systems February 1, 2016.
Chapter 17 Stability of minerals. Introduction Kinetics (the rate of reactions): Kinetics (the rate of reactions): –Reaction rates slow down on cooling.
Phase diagrams of unary and binary systems
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
Phase Diagrams Continued
Geol 2312 Igneous and Metamorphic Petrology
Materials Engineering
Binary Phase Diagrams GLY 4200 Fall, 2016.
Phase Diagrams 8-1.
1. Binary and ternary phase diagrams; melting of the mantle
Introduction to Materials Science and Engineering
Solid Solution Thermal Equilibrium Diagram
Your Guide to Stability and Occurrence of Minerals
C = 3: Ternary Systems: Example 1: Ternary Eutectic
Class 8. Mantle Melting and Phase Diagrams William Wilcock
Fully Miscible Solution
Changes of State BELLWORK-name the following state changes:
Solidification of Metals and Alloys
CHE 333 Class 5 Phase Diagrams. Prov08.
2/16/2019 9:54 PM Chapter 9 Phase Diagrams Dr. Mohammad Abuhaiba, PE.
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
Working with Phase Diagrams
Eutectic and Peritectic Systems
Phase diagrams of pure substances
IE-114 Materials Science and General Chemistry Lecture-10
Temperature 1. Cool liquid X to liquidus; En begins to crystallize
Equilibrium Crystallization of the Plagioclase Feldspars
Phase Diagram.
T l s Full solubility liquid Phase diagram solid g(n) Gibbs Energy
Mechanical Properties of Isomorphous Alloys
Presentation transcript:

Phase Diagrams Liquid a b Anorthite + Liquid T C Diopside + Anorthite 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite a b c 1553 1392 Wt.% Anorthite 1118 Ab 20 40 60 80 An 1100 1200 1300 1400 1500 1557 T C o Plagioclase Liquid plus L i q u d s S l Weight % An

Updates/questions Lab: Field trip on Saturday 18th, waivers in lab Topics: phase diagrams (today and Wednesday) Phase rule 1 component systems 2 component systems: Eutectic Solid solution Solvus

The Phase Rule F = C - f + 2

The Phase Rule F = C - f + 2

The Phase Rule F = C - f + 2

The Phase Rule F = C - f + 2

1 - Component Systems A B After Swamy and Saxena (1994), J. Geophys. Res., 99, 11,787-11,794. AGU

1 - C Systems Liquid log Pressure (MPa) Vapor Temperature oC 300 200 Ice VII Ice VI Ice II Ice I Ice V Ice III 300 200 100 -100 -3 -1 3 log Pressure (MPa) 400 -2 -4 1 2 Liquid Vapor 1 atm critical point 374oC & 21.8 MPa 0.01 o C & 0.0006 MPa 1 - C Systems Temperature oC After Bridgman (1911, Proc. Amer. Acad. Arts and Sci., 5, 441-513; 1936, J. Chem. Phys., 3, 597-605; 1937, J. Chem. Phys., 5, 964-966.

Binary Systems Liquid Anorthite + Liquid Diopside + Anorthite T C 1600 Liquid 1553 Liquidus 1500 T o C 1400 Anorthite + Liquid 1392 1300 Diopside + Liquid 1274 1200 Diopside + Anorthite Di 20 40 60 80 An Wt.% Anorthite Isobaric T-X phase diagram at atmospheric pressure (After Bowen (1915), Amer. J. Sci. 40, 161-185.

Crystallization in Binary Systems 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite a 1553 1392 Wt.% Anorthite

Crystallization: first crystals 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite a b c 1553 1392 Wt.% Anorthite

Crystallization: ongoing 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite a b c 1553 1392 Wt.% Anorthite

Crystallization: eutectic 1600 a Liquid 1553 Liquidus 1500 b c T o C 1400 Anorthite + Liquid 1392 d 1300 Diopside + Liquid g h 1274 1200 Diopside + Anorthite Di 20 40 60 80 An Wt.% Anorthite

Crystallization: levers The lever principle: fraction of melt vs. crystals d e f D Amount of liquid ef = de ef Amount of solid de An 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite a b c 1553 1392 Wt.% Anorthite } Crystals

Crystallization: left half 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite d e f 1553 1392 Wt.% Anorthite g h

Augite forms before plagioclase Gabbro of the Stillwater Complex, Montana This forms on the left side of the eutectic

Plagioclase forms before augite Ophitic texture Diabase dike This forms on the right side of the eutectic

Additional notes Liquid a b e Anorthite + Liquid d h 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite a b c d e f 1553 1392 Wt.% Anorthite g h

Fractional crystallization 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite 1553 1392 Wt.% Anorthite

Equilibrium melting Liquid Anorthite + Liquid d Diopside + Anorthite T 1274 Di 20 40 60 80 An 1200 1300 1400 1500 1600 T o C Anorthite + Liquid Liquid Liquidus Diopside + Liquid Diopside + Anorthite d 1553 1392 Wt.% Anorthite

Solid solutions T C Liquid Plagioclase Weight % An s d u L i q 1118 Ab 20 40 60 80 An 1100 1200 1300 1400 1500 1557 T C o Plagioclase Liquid plus L i q u d s S l Weight % An Isobaric T-X phase diagram at atmospheric pressure (after Bowen 1913, Amer. J. Sci., 35, 577-599).

Feldspar composition a T C Liquid Plagioclase Weight % An (100 XAn) o 1118 Ab 20 40 60 80 An 1100 1200 1300 1400 1500 1557 T C o Plagioclase Liquid plus Weight % An (100 XAn) a

Solid solutions & phase rule 1118 Ab 20 40 60 80 An 1100 1200 1300 1400 1500 1557 T C o Plagioclase Liquid plus Weight % An a b

Crystallization b c Liquid Plagioclase T C Liquid Plagioclase a o 1557 1500 b c Liquid 1400 Plagioclase T C o + 1300 Liquid Plagioclase 1200 1118 1100 Ab 20 40 60 80 An

Crystallization & phase rule F = 2 - 2 + 1 = 1 (“univariant”) Must specify only one variable from among: T a 1557 1500 b Liquid c X An liq X Ab liq X An plag X Ab plag 1400 Plagioclase o T C and are dependent upon T The slope of the solidus and liquidus are the expressions of this relationship + X An liq X An plag 1300 Liquid Plagioclase 1200 1118 1100 Ab 20 40 60 80 An

Ongoing crystallization 1557 1500 Liquid b c d f 1400 Plagioclase T C o + 1300 Liquid Plagioclase 1200 1118 1100 Ab 20 40 60 80 An

The lever principle: = D Amount of liquid Amount of solid ef = Amount of solid de where d = the liquid composition, f = the solid composition and e = the bulk composition a d b e f Liquid c d f D Plagioclase liquidus de ef + Liquid solidus Plagioclase Ab An

End of crystallization 1557 1500 Liquid b c d f 1400 Plagioclase T C o g h plus 1300 Liquid Plagioclase 1200 i 1118 1100 Ab 20 40 60 80 An Weight % An

of melts” observations Plagioclase 1557 1500 Liquid b Numbers refer to the “behavior of melts” observations c d f 1400 Plagioclase T C o g h plus 1300 Liquid * The actual temperatures and the range depend on the bulk composition Plagioclase 1200 i 1118 1100 Ab 20 40 60 80 An Weight % An

Melting--reverse of crystallization Equilibrium melting is exactly the opposite Heat An60 and the first melt is g at An20 and 1340oC Continue heating: both melt and plagioclase change X Last plagioclase to melt is c (An87) at 1475oC a 1557 1500 Liquid b c d f 1400 Plagioclase T C o g h plus 1300 Liquid Plagioclase 1200 i 1118 1100 Ab 20 40 60 80 An Weight % An

Fractional crystallization Remove crystals as they form so they can’t undergo a continuous reaction with the melt At any T Xbulk = Xliq due to the removal of the crystals a 1557 1500 Liquid b c d f 1400 Plagioclase o T C g h plus 1300 Liquid Plagioclase 1200 i 1118 1100 Ab 20 40 60 80 An Weight % An

Melting Liquid Plagioclase g T C h Liquid Plagioclase i Weight % An a 1557 1500 Liquid b c d f 1400 Plagioclase o T C g h plus 1300 Liquid Plagioclase 1200 i i 1118 1100 Ab 20 40 60 80 An Weight % An

Olivine System, another example Fo 20 40 60 80 Fa 1300 1500 1700 1890 1205 T oC Olivine Liquid plus 1900 a b c d Wt.% Forsterite Isobaric T-X phase diagram at atmospheric pressure (After Bowen and Shairer (1932), Amer. J. Sci. 5th Ser., 24, 177-213.

C. Binary Peritectic Systems 1557 Mg2SiO4 20 40 60 80 SiO2 1400 1600 1800 2000 1713 T oC MgSiO2 1543 1470 Enstatite Forsterite + Enstatite Liquid + 1695 Enstatite + Tridymite Enstatite + Cristobalite Cristobalite + Liquid Two Liquids Liquid Wt.% X2 b e a Figure 6-12. Isobaric T-X phase diagram of the system Fo-Silica at 0.1 MPa. After Bowen and Anderson (1914) and Grieg (1927). Amer. J. Sci.

Immiscible Liquids Cool X = n At 1960oC hit solvus exsolution ® 2 liquids o and p f = 2 F = 1 both liquids follow solvus 1557 Mg2SiO4 20 40 60 80 SiO2 1400 1600 1800 2000 1713 T oC MgSiO2 1543 1470 Forsterite + Enstatite Liquid + 1695 Enstatite + Tridymite Enstatite + Cristobalite Cristobalite + Liquid Two Liquids Liquid Wt.% X2 o n c p Mafic-rich liquid Silica-rich Crst 1695 Reaction? At 1695oC get Crst also

D. Solid Solution with Eutectic: Ab-Or (the alkali feldspars) Figure 6-16. T-X phase diagram of the system albite-orthoclase at 0.2 GPa H2O pressure. After Bowen and Tuttle (1950). J. Geology.

Effect of PH O on Ab-Or 2 Figure 6-17. The Albite-K-feldspar system at various H2O pressures. (a) and (b) after Bowen and Tuttle (1950), J. Geol, (c) after Morse (1970) J. Petrol.