Chapter 7 Linear Momentum.

Slides:



Advertisements
Similar presentations
Chapter 6 Table of Contents Section 1 Momentum and Impulse
Advertisements

Session System of Particle - 3. Session System of Particle - 3.
Physics.
Ch. 9 Linear Momentum.
Momentum and Collisions
Momentum and Collisions Momentum and Collisions Dr. Robert MacKay Clark College, Physics.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Momentum, impulse, and collisions
Example: A 10 g bullet is fired at a steel plate
S Fi = S miai S (ri x Fi ) = S (ri x miai) SYSTEMS OF PARTICLES
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
PS-5 Test Review. Questions 1 & 2 Distance – 60m/ magnitude only Displacement 10 m east/ magnitude and direction.
SPH3UW Today’s Agenda Friction What is it?
Principals of Movement, Momentum, Newtons Laws, Levers
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 7: Linear Momentum Definition.
Analyzing Genes and Genomes
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Essential Cell Biology
PSSA Preparation.
Essential Cell Biology
Rolling, Torque, and Angular Momentum
Physics 111: Lecture 14, Pg 1 Physics 111: Lecture 14 Today’s Agenda l Momentum Conservation l Inelastic collisions in one dimension l Inelastic collisions.
Systems of Particles.
Energy Generation in Mitochondria and Chlorplasts
MOMENTUM AND COLLISIONS
Momentum and Collisions
Chapter 9 Linear Momentum
Center of Mass and Linear Momentum
Principle of Work and Energy
AP Physics Review Ch 7 – Impulse and Momentum
Linear Momentum and Collisions
Chapter 7: Impulse and Momentum
Momentum and Impulse.
Linear Momentum and Collisions
Chapter 7 Momentum and Collisions. Momentum Newton’s Laws give a description of forces ○ There is a force acting or their isn’t ○ But what about in between.
Chapter 9 Systems of Particles. Section 9.2: Center of Mass in a Two Particle System Center of Mass is the point at which all forces are assumed to act.
Copyright © 2009 Pearson Education, Inc. PHY093 Lecture 2d Linear Momentum, Impulse and Collision 1.
Chapter 7 Linear Momentum
Momentum, Impulse, And Collisions
Momentum and Collisions
Momentum and Collisions
Today: Momentum – chapter 9 11/03 Finish momentum & review for exam 11/8 Exam 2 (5 – 8) 11/10 Rotation 11/15 Gravity 11/17 Waves & Sound 11/22 Temperature.
Momentum and Its Conservation
1 PPMF102– Lecture 3 Linear Momentum. 2 Linear momentum (p) Linear momentum = mass x velocity Linear momentum = mass x velocity p = mv p = mv SI unit:
Chapter 7 Impulse and Momentum. There are many situations when the force on an object is not constant.
Chapter 7 Linear Momentum. Units of Chapter 7 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy.
Chapter 7 Linear Momentum. MFMcGraw-PHY 1401Chap07b- Linear Momentum: Revised 6/28/ Linear Momentum Definition of Momentum Impulse Conservation.
Reading Quiz - Momentum
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 7 Part 2 Momentum and Collisions.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse of a force is the product of the average force and.
Chapter 6 Linear Momentum. Units of Chapter 6 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy.
Momentum and Collisions Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity.
Elastic and Inelastic Collisions. Elastic Collision If 2 colliding objects are very hard and no heat is produced in the collision, KE is conserved as.
The force on an object may not be constant, but may vary over time. The force can be averaged over the time of application to find the impulse.
Lecture 14: Collisions & Momentum. Questions of Yesterday A 50-kg object is traveling with a speed of 100 m/s and a 100-kg object is traveling at a speed.
Chapter 7 Impulse and Momentum. You are stranded in the middle of an ice covered pond. The ice is frictionless. How will you get off?
 car crashes car crashes 
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Momentum & Impulse Day #1: Introduction HW #7. Momentum & Collisions: Define Momentum: Momentum, p, is defined as the product of mass and velocity. Units:
Today: (Ch. 7) Momentum and Impulse Conservation of Momentum Collision.
Chapter 7 Impulse and Momentum.
Linear Momentum Impulse & Collisions.
Chapter 7 Impulse and Momentum.
Chapter 7 Impulse and Momentum.
Impulse and Momentum.
Momentum, Impulse, and Collisions
Presentation transcript:

Chapter 7 Linear Momentum

Chap07- Linear Momentum: Revised 3/3/2010 Definition of Momentum Impulse Conservation of Momentum Center of Mass Motion of the Center of Mass Collisions (1d, 2d; elastic, inelastic) MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Momentum From Newton’s Laws Consider two interacting bodies with m2 > m1: F21 F12 m1 m2 If we know the net force on each body then Could incorporate personal response system questions from the College Physics by G/R/R 2E ARIS site (www.mhhe.com/grr), Instructor Resources: CPS by eInstruction, Chapter 7, Questions 11 and 18. The velocity change for each mass will be different if the masses are different. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Rewrite the previous result for each body as: From the 3rd Law Combine the two results: MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Define Momentum The quantity (mv) is called momentum (p). p = mv and is a vector. The unit of momentum is kg m/s; there is no derived unit for momentum. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 From slide (4): The change in momentum of the two bodies is “equal and opposite”. Total momentum is conserved during the interaction; the momentum lost by one body is gained by the other. Δp1 +Δp2 = 0 MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Impulse Definition of impulse: We use impulses to change the momentum of the system. Could incorporate personal response system questions from the College Physics by G/R/R 2E ARIS site (www.mhhe.com/grr), Instructor Resources: CPS by eInstruction, Chapter 7, Questions 2, 3, 4, 7, 8, 9, 12, 14, and 16. One can also define an average impulse when the force is variable. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Impulse Example Example (text conceptual question 7.2): A force of 30 N is applied for 5 sec to each of two bodies of different masses. 30 N m1 or m2 Take m1 < m2 (a) Which mass has the greater momentum change? Since the same force is applied to each mass for the same interval, p is the same for both masses. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Example continued: (b) Which mass has the greatest velocity change? Since both masses have the same p, the smaller mass (mass 1) will have the larger change in velocity. (c) Which mass has the greatest acceleration? Since av the mass with the greater velocity change will have the greatest acceleration (mass 1). MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Change in Momentum Example An object of mass 3.0 kg is allowed to fall from rest under the force of gravity for 3.4 seconds. Ignore air resistance. What is the change in momentum? Want p = mv. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Change in Momentum Example What average force is necessary to bring a 50.0-kg sled from rest to 3.0 m/s in a period of 20.0 seconds? Assume frictionless ice. The force will be in the direction of motion. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Conservation of Momentum v1i v2i m1 m2 m1>m2 A short time later the masses collide. m1 m2 Could incorporate personal response system questions from the College Physics by G/R/R 2E ARIS site (www.mhhe.com/grr), Instructor Resources: CPS by eInstruction, Chapter 7, Questions 1 and 15 What happens? MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 During the interaction: N1 w1 F21 N2 w2 F12 x y There is no net external force on either mass. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 The forces F12 and F21 are internal forces. This means that: In other words, pi = pf. That is, momentum is conserved. This statement is valid during the interaction (collision) only. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Rifle Example A rifle has a mass of 4.5 kg and it fires a bullet of 10.0 grams at a muzzle speed of 820 m/s. What is the recoil speed of the rifle as the bullet leaves the barrel? As long as the rifle is horizontal, there will be no net external force acting on the rifle-bullet system and momentum will be conserved. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Center of Mass The center of mass (CM) is the point representing the mean (average) position of the matter in a body. This point need not be located within the body. Could incorporate personal response system questions from the College Physics by G/R/R 2E ARIS site (www.mhhe.com/grr), Instructor Resources: CPS by eInstruction, Chapter 7, Questions 6 and 20. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Center of Mass The center of mass (of a two body system) is found from: This is a “weighted” average of the positions of the particles that compose a body. (A larger mass is more important.) MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Center of Mass In 3-dimensions write where The components of rcm are: MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Center of Mass Example Particle A is at the origin and has a mass of 30.0 grams. Particle B has a mass of 10.0 grams. Where must particle B be located so that the center of mass (marked with a red x) is located at the point (2.0 cm, 5.0 cm)? x y A MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Center of Mass Example MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Find the Center of Mass The positions of three particles are (4.0 m, 0.0 m), (2.0 m, 4.0 m), and (1.0 m, 2.0 m). The masses are 4.0 kg, 6.0 kg, and 3.0 kg respectively. What is the location of the center of mass? x y 3 2 1 MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Example continued: MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Motion of the Center of Mass For an extended body, it can be shown that p = mvcm. From this it follows that Fext = macm. Could incorporate personal response system questions from the College Physics by G/R/R 2E ARIS site (www.mhhe.com/grr), Instructor Resources: CPS by eInstruction, Chapter 7, Question 13. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Center of Mass Velocity Body A has a mass of 3.0 kg and vx = +14.0 m/s. Body B has a mass of 4.0 kg and has vy = 7.0 m/s. What is the velocity of the center of mass of the two bodies? Consider a body made up of many different masses each with a mass mi. The position of each mass is ri and the displacement of each mass is ri = vit. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Center of Mass Velocity For the center of mass: Solving for the velocity of the center of mass: Or in component form: MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Center of Mass Velocity Applying the previous formulas to the example, MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Collisions in One Dimension When there are no external forces present, the momentum of a system will remain unchanged. (pi = pf) If the kinetic energy before and after an interaction is the same, the “collision” is said to be perfectly elastic. If the kinetic energy changes, the collision is inelastic. Could incorporate personal response system questions from the College Physics by G/R/R 2E ARIS site (www.mhhe.com/grr), Instructor Resources: CPS by eInstruction, Chapter 7, Questions 5, 10, 17 and 19. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Collisions in One Dimension If, after a collision, the bodies remain stuck together, the loss of kinetic energy is a maximum, but not necessarily a 100% loss of kinetic energy. This type of collision is called perfectly inelastic. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Inelastic Collisions in One Dimension In a railroad freight yard, an empty freight car of mass m rolls along a straight level track at 1.0 m/s and collides with an initially stationary, fully loaded, boxcar of mass 4.0m. The two cars couple together upon collision. (a) What is the speed of the two cars after the collision? MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Inelastic Collisions in One Dimension (b) Suppose instead that both cars are at rest after the collision. With what speed was the loaded boxcar moving before the collision if the empty one had v1i = 1.0 m/s. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

One Dimension Projectile A projectile of 1.0 kg mass approaches a stationary body of 5.0 kg mass at 10.0 m/s and, after colliding, rebounds in the reverse direction along the same line with a speed of 5.0 m/s. What is the speed of the 5.0 kg mass after the collision? MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Collision in Two Dimensions Body A of mass M has an original velocity of 6.0 m/s in the +x-direction toward a stationary body (B) of the same mass. After the collision, body A has vx = +1.0 m/s and vy = +2.0 m/s. What is the magnitude of body B’s velocity after the collision? B A Final A B vAi Initial Angle is 90o MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Collision in Two Dimensions x momentum: y momentum: Solve for v2fx: Solve for v2fy: The mag. of v2 is MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Summary Definition of Momentum Impulse Center of Mass Conservation of Momentum MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Extra Slides MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Conservation of Momentum Two objects of identical mass have a collision. Initially object 1 is traveling to the right with velocity v1 = v0. Initially object 2 is at rest v2 = 0. After the collision: Case 1: v1’ = 0 , v2’ = v0 (Elastic) Case 2: v1’ = ½ v0 , v2’ = ½ v0 (Inelastic) In both cases momentum is conserved. Case 1 Case 2 MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Conservation of Kinetic Energy? Case 1 Case 2 KE After = KE Before KE After = ½ KE Before (Conserved) (Not Conserved) KE = Kinetic Energy = ½mvo2 MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Where Does the KE Go? Case 1 Case 2 KE After = KE Before (Conserved) (Not Conserved) In Case 2 each object shares the Total KE equally. Therefore each object has KE = 25% of the original KE Before MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 50% of the KE is Missing Each rectangle represents KE = ¼ KE Before MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010

Chap07- Linear Momentum: Revised 3/3/2010 Turn Case 1 into Case 2 Each rectangle represents KE = ¼ KEBefore Take away 50% of KE. Now the total system KE is correct But object 2 has all the KE and object 1 has none Use one half of the 50% taken to speed up object 1. Now it has 25% of the initial KE Use the other half of the 50% taken to slow down object 2. Now it has only 25% of the the initial KE Now they share the KE equally and we see where the missing 50% was spent. MFMcGraw Chap07- Linear Momentum: Revised 3/3/2010