Supplemental slides for CSE 327 Prof. Jeff Heflin Ch. 20 – Neural Networks Supplemental slides for CSE 327 Prof. Jeff Heflin
A Neuron
Perceptron Learning function PERCEPTRON-LEARNING(examples,network) returns a perceptron hypothesis inputs: examples, a set of examples with input x and output y network, a perceptron with weights Wj and activation function g repeat for each e in examples do Err y[e] – g(in) Wj Wj + Err g’(in) xj[e] until some stopping criteria is satisfied return NEURAL-NET-HYPOTHESIS(network) From Figure 20.21, p. 742