Efficient, Complete Deletion of Synaptic Proteins using CRISPR

Slides:



Advertisements
Similar presentations
Volume 70, Issue 4, Pages (May 2011)
Advertisements

Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity
Volume 49, Issue 4, Pages (February 2006)
Volume 54, Issue 6, Pages (June 2007)
Jason R. Chalifoux, Adam G. Carter  Neuron 
Functional Convergence at the Retinogeniculate Synapse
Endocannabinoids Control the Induction of Cerebellar LTD
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses
NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca2+- Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin  Jennifer L.
Pathway-Specific Trafficking of Native AMPARs by In Vivo Experience
Volume 80, Issue 4, Pages (November 2013)
Alternative N-Terminal Domains of PSD-95 and SAP97 Govern Activity-Dependent Regulation of Synaptic AMPA Receptor Function  Oliver M. Schlüter, Weifeng.
LTP Requires a Unique Postsynaptic SNARE Fusion Machinery
Volume 86, Issue 2, Pages (April 2015)
Volume 47, Issue 6, Pages (September 2005)
Volume 86, Issue 5, Pages (June 2015)
Volume 70, Issue 2, Pages (April 2011)
Andres Barria, Roberto Malinow  Neuron 
Volume 11, Issue 12, Pages (June 2015)
The Retromer Supports AMPA Receptor Trafficking During LTP
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Volume 11, Issue 2, Pages (April 2015)
Volume 68, Issue 5, Pages (December 2010)
Carleton P. Goold, Roger A. Nicoll  Neuron 
Volume 46, Issue 1, Pages (April 2005)
Subunit-Specific NMDA Receptor Trafficking to Synapses
Volume 52, Issue 2, Pages (October 2006)
Volume 92, Issue 1, Pages (October 2016)
Volume 123, Issue 1, Pages (October 2005)
Serotonin Mediates Cross-Modal Reorganization of Cortical Circuits
Volume 52, Issue 5, Pages (December 2006)
Volume 77, Issue 6, Pages (March 2013)
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Zhenglin Gu, Jerrel L. Yakel  Neuron 
Synapse-Specific Adaptations to Inactivity in Hippocampal Circuits Achieve Homeostatic Gain Control while Dampening Network Reverberation  Jimok Kim,
Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period  Kyung-Seok Han, Samuel F. Cooke, Weifeng Xu  Cell.
Volume 97, Issue 2, Pages e3 (January 2018)
Volume 57, Issue 2, Pages (January 2008)
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Volume 67, Issue 2, Pages (July 2010)
Volume 50, Issue 3, Pages (May 2006)
Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition  Hui-Chen Lu, Ernesto Gonzalez, Michael C Crair 
Long-Term Potentiation in Cultures of Single Hippocampal Granule Cells: A Presynaptic Form of Plasticity  Gang Tong, Robert C Malenka, Roger A Nicoll 
Volume 71, Issue 6, Pages (September 2011)
Volume 62, Issue 2, Pages (April 2009)
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Volume 125, Issue 4, Pages (May 2006)
Volume 73, Issue 5, Pages (March 2012)
Marta Navarrete, Alfonso Araque  Neuron 
Volume 73, Issue 3, Pages (February 2012)
Volume 3, Issue 3, Pages (March 2013)
Volume 25, Issue 4, Pages e4 (October 2018)
Volume 61, Issue 1, Pages (January 2009)
Volume 78, Issue 3, Pages (May 2013)
Volume 71, Issue 6, Pages (September 2011)
Erika D. Nelson, Ege T. Kavalali, Lisa M. Monteggia  Current Biology 
Selective modulation of AMPAR-mediated transmission in 4E-BP2−/− mice.
CX3CR1 deficiency impairs the functional maturation of thalamocortical synapses. CX3CR1 deficiency impairs the functional maturation of thalamocortical.
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Kinetics of Synaptic Vesicle Refilling with Neurotransmitter Glutamate
Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons  Song-Hai Shi, Yasunori Hayashi, José A. Esteban,
Alexandre Mathy, Beverley A. Clark, Michael Häusser  Neuron 
Volume 66, Issue 2, Pages (April 2010)
Nicole Calakos, Susanne Schoch, Thomas C. Südhof, Robert C. Malenka 
SAP102 Mediates Synaptic Clearance of NMDA Receptors
Volume 54, Issue 1, Pages (April 2007)
Volume 7, Issue 5, Pages (June 2014)
Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP
Presentation transcript:

Efficient, Complete Deletion of Synaptic Proteins using CRISPR Salvatore Incontro, Cedric S. Asensio, Robert H. Edwards, Roger A. Nicoll  Neuron  Volume 83, Issue 5, Pages 1051-1057 (September 2014) DOI: 10.1016/j.neuron.2014.07.043 Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Deletion of NMDA Currents by CRISPR/Cas9 Knockout of GRIN1 (A) Sample traces of NMDAR evoked EPSCs, from a transfected CRISPR/Cas9 cell (green trace) and a neighboring control cell (black trace) in the presence of NBQX (10 μM) and after addition of D AP-5 (50 μM). (B) Bar graph showing the averaged eEPSC amplitudes of control, 46.43 ± 4.22 pA, n = 9; CRISPR_GRIN1, 0 pA, n = 9; control + AP-5, 0 pA, n = 5; CRISPR_GRIN1+ AP-5, 0 pA, n = 5. (C) Western blot for the GluA2 subunit of the AMPAR and GluN1 subunit of the NMDAR of 18-day-old dissociated hippocampal neurons infected with lentiCRISPR_GRIN1 or lentiCRISPR GRIA2 on day 4. (D) Types and frequency of insertions or deletions obtained after infecting dissociated hippocampal neurons with lentiCRISPR GRIN1. See also Figure S1. Neuron 2014 83, 1051-1057DOI: (10.1016/j.neuron.2014.07.043) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 Deletion of NMDAR by CRISPR/Cas9 Increases AMPAR EPSCs (A) Scatterplot shows amplitudes of NMDA EPSCs for single pairs (open circles) and mean ± SEM (filled circle) for GRIN1 KO by CRISPR/Cas9. Data represent pairs of simultaneously recorded neurons in slice culture from CRISPR_GRIN1-transfected and neighboring control cells 14–15 days after transfection. Scale bar, 50 pA and 50 ms. (B) Paired average of single pairs from control and transfected cells. Mean ± SEM for control and CRISPR_GRIN1 are 37.53 ± 4.7 pA, n = 16 and 2 ± 0.8 pA, n = 16, respectively. ∗∗∗p = 0.0005 Wilcoxon signed-rank test. The very small remaining current measured at 100 ms is due to a small residual tail of AMPAR current. (C) Time course for the changes in NMDAR EPSC amplitudes in hippocampal slice cultures after CRISPR_GRIN1 transfection. This includes data in the absence of NBQX (5 days and 7 days) and in the presence of NBQX (10 days, 12 days, and 15 days). The values represent the percentage of control for different days following transfection: 5 days 46.3% ± 7%, n = 10; 7 days 40.6% ± 8%, n = 8; 10 days 2.8% ± 1.8%, n = 8; 12 days 0% ± 0%, n = 8; 15 days 0% ± 0%, n = 9. (D) Scatterplot for AMPAR EPSC amplitudes for single pairs (open circles) and mean scatterplot (filled circle). Scale bar, 50 pA and 50 ms. (E) Paired average of single pairs from control and transfected CRISPR_GRIN1 cells. Mean ± SEM for control and transfected neurons are 105 ± 13.5 pA n = 16 and 281.2 ± 41 pA n = 16, respectively. ∗∗∗p = 0.0001 Wilcoxon signed-rank test. (F) Time course for the changes in AMPAR EPSC amplitudes in hippocampal slices after CRISPR_GRIN1 transfection. Ratio of AMPAR EPSC: 5 days 167.7% ± 25.8%, n = 10; 7 days 230.2% ± 13.2%, n = 8; 10 days 310% ± 42%, n = 13; 12 days 302% ± 87%, n = 11; 15 days 359% ± 69%, n = 16. See also Figure S2. Neuron 2014 83, 1051-1057DOI: (10.1016/j.neuron.2014.07.043) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 Rescue of NMDAR EPSC with GluN1 cDNA Resistant to Cas9 (A) NMDAR EPSC amplitudes of control and neighboring rescued GluN1 cells, for single pairs (open circles) and mean ± SEM (filled circle). Scale bar, 50 pA and 50 ms. (B) Paired average of single pairs from control and transfected cells. Mean ± SEM for control and rescue are 37.8 ± 2.8 pA, n = 16 and 38.1 ± 4.9 pA, n = 16, respectively. p = 0.84 Wilcoxon signed-rank test. (C) AMPAR EPSC amplitudes for single pairs and mean ± SEM. Scale bar, 50 pA and 50 ms. (D) Paired average of single pairs from control and transfected cells. AMPAR EPSC amplitudes for control and rescue are 87.6 ± 8.1 pA, n = 15 and 86.53 ± 11.56 pA, n = 15, respectively. Mean ± SEM, p = 0.96 Wilcoxon signed-rank test. See also Figure S3. Neuron 2014 83, 1051-1057DOI: (10.1016/j.neuron.2014.07.043) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 CRISPR/Cas9 GRIA2 Knockout (A) AMPAR EPSC amplitudes of control and neighboring GRIA2 KO by CRISPR/Cas9. Scatterplot for single pairs (open circles) and mean ± SEM (filled circle). Scale bar, 50 pA and 10 ms. (B) Graph bars represent mean values of AMPAR EPSC amplitudes for control and CRISPR_GRIA2. Mean ± SEM are Cnt 101.6 ± 13 n = 11; CRISPR_GRIA2 39.7 ± 4.4 n = 11. ∗∗p = 0.001 Wilcoxon signed-rank test. (C) Graph representing I/V plots for control and CRISPR_GRIA2 cells: the AMPAR EPSC from the GluA2 KO cell is inwardly rectifying. (D) Mean ± SEM of rectification index values for control (0.88 ± 0.1) and CRISPR_GRIA2 cells (0.06 ± 0.03). ∗∗∗p < 0.0001 Student’s unpaired t test. (E) NMDAR EPSC scatterplot for single pairs (open circles) and mean ± SEM (filled circle). Scale bar, 50 pA and 50 ms. (F) Graph bars represent mean values of NMDAR EPSC amplitudes for control and CRISPR_GRIA2. Mean ± SEM are Cnt 38.36 ± 5 n = 11; CRISPR_GRIA2 40.8 ± 4 n = 11. p = 0.77 Wilcoxon signed-rank test. See also Figure S4. Neuron 2014 83, 1051-1057DOI: (10.1016/j.neuron.2014.07.043) Copyright © 2014 Elsevier Inc. Terms and Conditions