Matematičke metode u kemijskom inženjerstvu Vibrirajuće membrane

Slides:



Advertisements
Similar presentations
Ma.
Advertisements

1.6. Pohrana podataka.
Programi zasnovani na prozorima
PONAVLJANJE CheckBox Koristi se za rešavanje zadataka gde je potrebno omogućiti uključivanje ili isključivanje jedne ili više opcija. Važna svojstva: –Checked.
Strojno učenje (engl. machine learning)
Programiranje - Blokovi naredbi i logički tipovi –
Java Petlje i logika - 1.
Present Continuous Tense
FOURIEROVI REDOVI I INTEGRALI
The Present Perfect Continuous Tense
Tvorba Present Simple se tvori od infinitivne osnove glagola
Microsoft Office 2007 MS Office je programski paket koji sadrži više programa: MS Word – program za obradu teksta MS Excel – program za izradu tabela sa.
Quick Basic.
Petlje FOR - NEXT.
REPEAT…UNTIL Naredbe ciklusa.
Komponente izbora i kontejnerske komponente
Explore-plots Katarina Jeremić 143/2011 Jovana Vulović 33/2011
Valovi Valna jednadžba: od klasične fizike do kvantne fizike!!!
Europski dan programiranja
Uvod u programiranje - matematika – X predavanje
Reference ćelije i opsega
Elektrotehnički fakultet – Podgorica Operativni sistemi
14 UNUTRAŠNJE I ANONIMNE KLASE
LAPLACEOVA TRANSFORMACIJA
SIVI BALANS SIVI OMJER.
Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije
Page Layout Podešavanje stranica.
MessageBox.
KORELACIJSKA I REGRESIJSKA ANALIZA
predavanja v.as.mr. Samir Lemeš
(カックロ ) Ivo Ivanišević Ena Melvan
DISKRETNI DINAMIČKI SUSTAVI –LOGISTIČKI MODEL -KAOS-
Pojmovi digitalnog zapisa
PROGRAMSKI JEZIK PASCAL
MATEMATIČKI FAKULTET, UNIVERZITET U BEOGRADU
ELEKTRONIČKA POŠTA ( ) OTVARANJE RAČUNA.
Osnovni simboli jezika Pascal
FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE
Do While ... Loop struktura
Virtualizacija poslovnih procesa metodom „Swimlane“ dijagrama
Programiranje – Small Basic
Memorije Vrste memorija i osnovni pojmovi Ispisne memorije
Programiranje - Uvod - Kolegij: Programski jezik C++
Geography of civilizations
Strukture podataka i algoritmi 5. VRIJEME IZVRŠAVANJA ALGORITMA
PREZENTACIJA KOLEGIJA
Nizovi.
Skup instrukcija procesora
Autor: Marko Pletikosa Mentor: doc.dr.sc. Domagoj Jakobović
Naredbe u php-u.
SRETNA SEDMICA.
Programski jezik C++ - Vježbe - 5. dio
Model ekonomske količine nabave
Programski jezik Python
Jacksepticeye Nessa Salaman 6.c.
Donošenje odluka o karijeri
VAŽNOST ČITANJA U NIŽIM RAZREDIMA OSNOVNE ŠKOLE
Ljepota matematike Slijedi nekoliko zanimljivih jednakosti koje ukazuju na ljepotu matematike te povezanost matematike s Bogom koji je izvor svih čuda.
Kratkotrajne veze žena i muškaraca
HODITI U SVJETLU Odreći se svjetovnosti ADAPT it! Teaching Approach
Izranjajuća Inteligencija
Discipleship in Action
LimeSurvey Uvjetni prikaz pitanja Internetska istraživanja
STATISTIKA (STRUČNI STUDIJ) Korelacijska analiza Regresijska analiza.
Ljepota matematike Slijedi nekoliko zanimljivih jednakosti koje ukazuju na ljepotu matematike te povezanost matematike s Bogom koji je izvor svih čuda.
Ponavljanje Pisana provjera
EUROPSKI TJEDAN PROGRAMIRANJA-LOGO
Programiranje - Naredbe za kontrolu toka programa – 1. dio
INTERPOLACIJA PO DIJELOVIMA POLINOMIMA
Kako zaštititi privatnost na facebooku
Presentation transcript:

Matematičke metode u kemijskom inženjerstvu Vibrirajuće membrane Fakultet kemijskog inženjerstva i tehnologije Zavod za matematiku Matematičke metode u kemijskom inženjerstvu Vibrirajuće membrane Studenti: Ana Babić; Hrvoje Šoprek

Teorijska pozadina PARCIJALNE DIFERENCIJALNE JEDNADŽBE jednadžba koja uključuje jednu ili više parcijalnih derivacija neke nepoznate funkcije koja sadrži dvije ili više nezavisnih varijabli red najviše derivacije naziva se redom jednadžbe dolaze do izražaja kada su u vezi s različitim fizičkim i geometrijskim problemima, odnosno kada zadana funkcija ovisi o dvije ili više nezavisnih varijabli nezavisne varijable mogu biti vrijeme ili neka od koordinata u prostoru Insert a map of your country.

Teorijska pozadina PDJ je linearna ako je prvog stupnja zavisne varijable i njenih parcijalnih derivacija u slučajevima, kada svaki član takve jednadžbe sadrži zavisnu varijablu ili jednu od njenih derivacija, za jednadžbu kažemo da je homogena inače je takva jednadžba nehomogena Insert a picture of one of the geographic features of your country.

Teorijska pozadina rješenje parcijalnih diferencijalnih jednadžbi jest područje R prostora nezavisne varijable u funkciji koja sadrži sve parcijalne derivacije i zadovoljava jednadžbu svugdje u R jedinstveno rješenje PDJ koje odgovara zadanom fizičkom problemu može se dobiti upotrebom dodatnih informacija koje potječu iz same fizičke situacije npr. u nekim slučajevima bit će dane vrijednosti rješenja problema na granicama neke domene ( rubni uvjeti ), ili kad je t – vrijeme, jedna od varijabli, mogu biti dana rješenja za t=0 ( početni uvjeti ) ako znamo da je obična diferencijalna jednadžba linearna i homogena , tada možemo iz poznatih rješenja doznati i ostala rješenja preko superpozicije za homogene linearne PDJ situacija je vrlo slična Insert a picture illustrating a season in your country.

Vibrirajuće membrane DVODIMENZIJSKA VALNA JEDNADŽBA kao jedan od važnih problema u području vibracija razmotrit ćemo titranje membrana na početku postavljamo važne pretpostavke: 1. masa membrane po jedinici površine je konstantna  „homogena membrana“ ; membrana je posve fleksibilna i tako tanka da ne pruža nikakav otpor savijanju 2. membrana je raširena i fiksirana preko cijele svoje granice u xy-ravnini ; napetost membrane po jedinici duljine T, koja je posljedica rastezanja membrane, jednaka je u svim točkama i njezin smjer se ne mijenja tijekom vibriranja 3. otklon u (x,y,z) membrane tijekom vibriranja je malen u usporedbi s veličinom membrane, a svi kutevi nagiba su također maleni Insert a picture of an animal and or plant found in your country.

Vibrirajuće membrane da bi mogli doći do diferencijalne jednadžbe koja opisuje pomicanje membrane, moramo razmotriti sile koje djeluju na malim dijelovima membrane y+y y x x+x MEMBRANA Add key points in the history of your country to the timeline.

Vibrirajuće membrane kako su otklon membrane i kutevi nagiba mali, stranice isječka membrane su jednake x i y napetost, T, je sila po jedinici duljine sila koja djeluje na rubovima isječka aproksimirana je Tx i Ty kako je membrana fleksibilna, ove sile su tangencijalne na membranu Insert a picture illustrating a custom or tradition here.

Vibrirajuće membrane gibanje dijelova membrane u horizontalnom smjeru je zanemarivo maleno membrana se giba transverzalno, odnosno svaki djelić membrane se giba vertikalno vertikalne komponente sila preko krajeva paralelnih s yu-ravninom su: kako su kutevi mali, njihove sinuse možemo zamijeniti s tangensima rezultanta dviju vertikalnih komponenti rezultante druge dvije nasuprotne strane isječka su:

Vibrirajuće membrane

Vibrirajuće membrane ako se x i y približe 0, slijedi: ova jednadžba naziva se DVODIMENZIJSKA VALNA JEDNADŽBA može se izraziti pomoću Laplace-a i tako pisati u obliku:

Vibrirajuće membrane PRAVOKUTNE MEMBRANE da bi mogli riješiti problem vibrirajuće membrane, moramo odrediti rješenje u(x,y,t) za dvo-dimenzijsku valnu jednadžbu: koja zadovoljava rubne uvjete: te početne uvjete:

Vibrirajuće membrane Prvi korak. pomoću metode razdvajanja varijabli, prvo ćemo odrediti rješenje jednadžbe koje će zadovoljiti uvijet: y x R b a

Vibrirajuće membrane zato što funkcija na lijevo ovisi jedino o t, dok funkcije na desno ne ovise o t, izrazi na obje strane moraju biti jednaki konstanti

Vibrirajuće membrane funkcija na lijevo ovisi jedino o x dok funkcija na desno ovisi jedino o y izraz na obje strane mora biti jednak konstanti

Vibrirajuće membrane

Vibrirajuće membrane Drugi korak. opća rješenja su: F=HQ mora iznositi nula na granici, koja je zadana s x=0, x=a, y=0, te y=b uvjeti su slijedeći: H(0)=0, H(a)=0, Q(0)=0, Q(b)=0 H(0) =A=0, H(a)=B sinka=0

Vibrirajuće membrane moramo uzeti u obzir B0 jer je inače H0 i F0 sin ka=0 ili ka=m , odnosno (cijeli m) C=0, a p mora biti sužen na vrijednosti p=n/b gdje je cijeli n dolazimo do rješenja slijedi da je funkcija rješenje jednadžbe koje iznosi nula na granici pravokutne membrane

Vibrirajuće membrane k=m/a i p=n/b odgovara slijedi da je funkcija na duljini sa mn , rješenja valne jednadžbe, koja iznose nula na granici pravokutne membrane ove funkcije nazivaju se karakteristične funkcije, a iznosi mn se zovu karakteristične vrijednosti vibrirajuće membrane frekvencija umn je mn/2 ovisno o a i b, nekoliko funkcija može odgovarati istoj karakterističnoj vrijednosti,a fizički to znači da mogu postojati vibracije s jednakim frekvencijama, ali različitim krivuljama koje čine nepomične točke

Vibrirajuće membrane Treći korak. ovi redovi nazivaju se dvostruki Fourier-ovi redovi ako pretpostavimo da se f(x,y) mogu razviti u takve redove, tada Fourier-ove koeficijente Bmn za f(x,y) možemo odrediti pomoću

Vibrirajuće membrane za fiksni y ovo su Fourier-ovi sinusni redovi za f(x,y), shvaćen kao funkcija x, pa slijedi da su koeficijenti ove ekspanzije Fourier-ov sinusni red za Km(y) pa su koeficijenti opća Euler-ova formula za Fourier-ove koeficijente za f(x,y) u dvostrukim Fourier-ovim redovima Bmn je sada određen za f(x,y)

Vibrirajuće membrane pretpostavljamo da g(x,y) može biti razvijen u dvostruke Fourier-ove redove tada dobivamo rezultat je taj, da bi jednadžba zadovoljila početne uvjete, koeficijenti Bmn i B*mn moraju biti izabrani prema ovim izrazima

m=3 m=2 m=1 n=3 n=2 n=1 Primjeri

Primjeri 1,1 1,2 2,1 2,2

Primjeri

n=3 n=2 n=1 m=2 m=1 m=0 Primjeri

Primjeri 0,1 1,1 2,1 0,2 1,2 0,3

HVALA NA PAŽNJI