by Rosemary E. Smith, Vanshree Patel, Sandra D. Seatter, Maureen R

Slides:



Advertisements
Similar presentations
IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway  Hee Jung Kim, Seok Bean Song, Jung Min Choi, Kyung Moon Kim,
Advertisements

Volume 132, Issue 1, Pages (January 2007)
Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33 by Tatjana Pecaric-Petkovic, Svetlana A. Didichenko,
MHC class II/CD38/CD9: a lipid-raft–dependent signaling complex in human monocytes by Marie-Thérèse Zilber, Niclas Setterblad, Thierry Vasselon, Christelle.
Involvement of suppressors of cytokine signaling in toll-like receptor–mediated block of dendritic cell differentiation by Holger Bartz, Nicole M. Avalos,
IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity.
MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines by.
by Masih Ostad, Margareta Andersson, Astrid Gruber, and Anne Sundblad
CD44 ligation on peripheral blood polymorphonuclear cells induces interleukin-6 production by Giuseppe Sconocchia, Laura Campagnano, Domenico Adorno, Angela.
by Rong He, Hairong Sang, and Richard D. Ye
Cell-to-cell contact between activated CD4+ T lymphocytes and unprimed monocytes interferes with a TH1 response  Miriam Wittmann, MD, Mareike Alter, Tanja.
The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent by Sabine G. Plötz, Arnd Lentschat, Heidrun Behrendt,
C1q and HMGB1 reciprocally regulate human macrophage polarization
The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor–1α in macrophages via sphingosine-1-phosphate and transforming.
CD271 on Melanoma Cell Is an IFN-γ-Inducible Immunosuppressive Factor that Mediates Downregulation of Melanoma Antigens  Junpei Furuta, Takashi Inozume,
Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cδ by Ingo.
Annexin A2 tetramer activates human and murine macrophages through TLR4 by Jennifer F. A. Swisher, Nicholas Burton, Silvia M. Bacot, Stefanie N. Vogel,
Megakaryocyte Growth and Development Factor-Induced Proliferation and Differentiation Are Regulated by the Mitogen-Activated Protein Kinase Pathway in.
by Juan C. Rodríguez-Alba, Miguel E
by Rong L. He, Jian Zhou, Crystal Z
by Seiji Fukuda, Hal E. Broxmeyer, and Louis M. Pelus
by Daniela Buglio, Noor M
In the absence of IGF-1 signaling, IFN-γ suppresses human malignant T-cell growth by Laura Conti, Gabriella Regis, Angela Longo, Paola Bernabei, Roberto.
Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses by Caroline Lemieux, Ricardo Maliba, Judith.
Signal transduction pathways triggered by the FcϵRIIb receptor (CD23) in human monocytes lead to nuclear factor-κB activation  Rosa M. Ten, MD, PhDa,
Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses by Madeleine M. Hipp, Norbert Hilf, Steffen.
Ex vivo induction of multiple myeloma–specific cytotoxic T lymphocytes
Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells by Wuding Zhou, Hetal Patel, Ke Li, Qi Peng, Marie-Bernadette.
by Thomas T. Murooka, Ramtin Rahbar, Leonidas C
Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15 by Maria Wysocka, Bernice M. Benoit, Sarah.
Volume 24, Issue 5, Pages (May 2006)
Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing.
Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone.
Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival by Diana Starlets, Yael Gore, Inbal Binsky, Michal Haran, Nurit.
Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties by Frederick D. Goldman, Andrew L. Gilman,
CC chemokine ligand 20 partially controls adhesion of naive B cells to activated endothelial cells under shear stress by Anja Meissner, Olaf Zilles, Rosa.
LPS induces CD40 gene expression through the activation of NF-κB and STAT-1α in macrophages and microglia by Hongwei Qin, Cynthia A. Wilson, Sun Jung Lee,
TGF-β combined with M-CSF and IL-4 induces generation of immune inhibitory cord blood dendritic cells capable of enhancing cytokine-induced ex vivo expansion.
Human osteoarthritic chondrocytes are impaired in matrix metalloproteinase-13 inhibition by IFN-γ due to reduced IFN-γ receptor levels  R. Ahmad, M. El.
by Ulrike Schleicher, Andrea Hesse, and Christian Bogdan
Volume 5, Issue 4, Pages (April 2009)
Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function by Alfonso Catalano, Paola Caprari, Simona Moretti, Monica.
The Related Adhesion Focal Tyrosine Kinase (RAFTK) Is Tyrosine Phosphorylated and Participates in Colony-Stimulating Factor-1/Macrophage Colony-Stimulating.
Tuning the volume of the immune response: strength and persistence of stimulation determine migration and cytokine secretion of dendritic cells by Thomas.
Dysregulation of LDL receptor under the influence of inflammatory cytokines: A new pathway for foam cell formation1  Dr Xiong Z. Ruan, Zac Varghese, Stephen.
Unresponsiveness of MyD88-Deficient Mice to Endotoxin
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia by Shahrzad Jalali, Tammy Price-Troska, Jonas Paludo, Jose Villasboas, Hyo-Jin.
Volume 18, Issue 5, Pages (May 2003)
Kathleen R. Bartemes, BA, Gail M. Kephart, BS, Stephanie J
Akio Horiguchi, Mototsugu Oya, Ken Marumo, Masaru Murai 
Effect of advanced glycation end-products on gene expression and synthesis of TNF-α and endothelial nitric oxide synthase by endothelial cells  Gloria.
Volume 118, Issue 6, Pages (June 2000)
Anti-Inflammatory Activity of Sertaconazole Nitrate Is Mediated via Activation of a p38– COX-2–PGE2 Pathway  Runa Sur, Jeffrey M. Babad, Michelle Garay,
Mechanisms of cross hyporesponsiveness to toll-like receptor bacterial ligands in intestinal epithelial cells  Jan-Michel Otte, Elke Cario, Daniel K.
The Human Skin–Associated Autoantigen α-NAC Activates Monocytes and Dendritic Cells via TLR-2 and Primes an IL-12-Dependent Th1 Response  Susanne Hradetzky,
Volume 22, Issue 4, Pages (April 2005)
Volume 25, Issue 5, Pages (November 2006)
Soluble CD86 Is a Costimulatory Molecule for Human T Lymphocytes
P38 Mitogen-Activated Protein Kinase Mediates Dual Role of Ultraviolet B Radiation in Induction of Maturation and Apoptosis of Monocyte-Derived Dendritic.
Defective negative regulation of Toll-like receptor signaling leads to excessive TNF-α in myeloproliferative neoplasm by Hew Yeng Lai, Stefan A. Brooks,
Volume 32, Issue 4, Pages (April 2010)
PPARδ Is a Type 1 IFN Target Gene and Inhibits Apoptosis in T Cells
IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway  Hee Jung Kim, Seok Bean Song, Jung Min Choi, Kyung Moon Kim,
Serotonin Activates Human Monocytes and Prevents Apoptosis
LAT Links the Pre-BCR to Calcium Signaling
by Rodrigo Abreu, Frederick Quinn, and Pramod K. Giri
Harald Renz, MD, Chaya Brodie, PhD, Katherine Bradley, BS, Donald Y. M
by Babs O. Fabriek, Robin van Bruggen, Dong Mei Deng, Antoon J. M
Volume 2, Issue 4, Pages (October 2012)
Volume 126, Issue 5, Pages (May 2004)
Presentation transcript:

A novel MyD-1 (SIRP-1α) signaling pathway that inhibits LPS-induced TNFα production by monocytes by Rosemary E. Smith, Vanshree Patel, Sandra D. Seatter, Maureen R. Deehan, Marion H. Brown, Gareth P. Brooke, Helen S. Goodridge, Christopher J. Howard, Kevin P. Rigley, William Harnett, and Margaret M. Harnett Blood Volume 102(7):2532-2540 October 1, 2003 ©2003 by American Society of Hematology

Ligation of MyD-1 specifically inhibits LPS-stimulated production of TNFα but not other cytokines. Ligation of MyD-1 specifically inhibits LPS-stimulated production of TNFα but not other cytokines. Human PBMCs were cultured with LPS (100 ng/mL) in the presence or absence of murine anti-human MyD-1 or the isotype control antibody for 24 hours, after which supernatants were analyzed by ELISA for cytokine production. The results shown are the mean production from triplicate cultures of (A) TNFα, (B) IL-6, (C) IL-1β, (D) IL-10, (E) IL-12 p70, (F) IL-15, (G) IFNγ, (H) IL-2, and (I) IL-8 secretion (means ± 1 SD; *P = .002). Stimulations are as follows: lane 1, medium; lane 2, anti-MyD-1 (10 μg/mL); lane 3, IgG isotype control (10 μg/mL); lane 4, LPS; lane 5, LPS plus anti-MyD-1; lane 6, LPS plus IgG. These data are representative of up to 14 experiments. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

The effect of ligation of MyD-1 on the inhibition of TNFα induced by other pathogen products. The effect of ligation of MyD-1 on the inhibition of TNFα induced by other pathogen products. Human PBMCs were cultured for 24 hours with either 100 ng/mL LPS, 1 μg/mL Zymosan A, or 1000 U/mL PPD in the presence or absence of murine anti-human MyD-1 or the isotype control antibody, after which supernatants were analyzed by ELISA for TNFα. The results shown are the mean production of TNFα (means ± 1 SD, *P < .01, **P < .005 versus IgG1 control) for (A) LPS, (B) Zymosan A, or (C) PPD cultures. These data are representative of 3 experiments. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

Ligation of MyD-1 induces tyrosine phosphorylation and recruitment of SHP-2. Ligation of MyD-1 induces tyrosine phosphorylation and recruitment of SHP-2. Cells of the human monocyte cell line U937, which expresses surface MyD-1 (results not shown), were incubated in the presence and absence of murine anti-human MyD-1 antibody (ILA24; 10 μg/mL) for up to 60 minutes at 37°C and immune complexes prepared. The induction of tyrosine phosphorylation after crosslinking MyD-1 was assessed by Western blot analysis of anti-MyD-1 immune complexes using the anti-phosphotyrosine mAb, 4G10 (A). Similarly, anti-MyD-1 immune complexes were assessed for MyD-1 (B), SHP-1 (C), or SHP-2 (D) expression as indicated. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

Stimulation of human U937 monocytes with anti-MyD-1 stimulates PI 3-kinase. Stimulation of human U937 monocytes with anti-MyD-1 stimulates PI 3-kinase. (A) Uninduced [32P]-labeled U937:Δp85 cells were stimulated in the presence (▪) and absence (□) of anti-MyD-1 (10 μg/mL) for the indicated times at 37°C. Pretreatment (30 minutes) with wortmannin (1 nM) had little effect on basal PIP3 levels (▵) but suppressed anti-MyD-1-stimulated PIP3 production (▴). Similar anti-MyD-1 stimulations were carried out on cells induced to overexpress the dominant-negative form of p85. IPTG-induced U937:Δp85 cells were stimulated in the presence (•) and absence (○) of anti-MyD-1 (10 μg/mL) for the indicated times at 37°C. Lipids were extracted and [32P]PIP3 production was identified by TLC and quantified by liquid scintillation counting. Data are presented as means ± SD, n = 3, and are representative of 5 independent experiments demonstrating coupling of MyD-1 to PI 3-kinase. (B) Anti-SHP-2 immune complexes from U937 cells were assessed for p85 expression, tyrosine phosphorylation, and SHP-2 expression. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

MyD-1 is coupled to consequent activation of PI 3-kinase, PtdCho-PLD, and sphingosine kinase. MyD-1 is coupled to consequent activation of PI 3-kinase, PtdCho-PLD, and sphingosine kinase. (A) U937 cells labeled with [3H]inositol were stimulated with isotype control (IgG1), LPS (100 ng/mL), anti-MyD-1 (10 μg/mL), or LPS plus anti-MyD-1 for 1 hour in the presence of 10 mM LiCl before measuring PIP2-PLC activation by determining total [3H]inositol phosphate generation. (B) U937 cells labeled with [3H]palmitate were stimulated with isotype control (IgG1), LPS (100 ng/mL), anti-MyD-1 (10 μg/mL), or LPS plus anti-MyD-1 for 1 hour before measuring PtdCho-PLD activation by determining [3H]PtdBut generation. (C) Uninduced [3H]palmitate-labeled U937:Δp85 cells or [3H]palmitate-labeled U937:Δp85 cells induced to overexpress the dominant-negative form of p85 were stimulated with IgG1 or anti-MyD-1 (10 μg/mL) for 1 hour at 37°C. Some samples were pretreated (30 minutes) with wortmannin (5 nM or 50 nM) as indicated. (D) [32P]-labeled U937 cells were stimulated in the presence (♦) or absence (□) of anti-MyD-1 (10 μg/mL) for the indicated times before determining levels of sphingosine-1-phosphate. (E) Uninduced [3H]serine-labeled U937:Δp85 cells or [3H]serine-labeled U937:Δp85 cells induced to overexpress the dominant-negative form of p85 were stimulated in the presence or absence of anti-MyD-1 (10 μg/mL) for 1 hour at 37°C. Some samples were pretreated (30 minutes) with wortmannin (5 nM or 50 nM) as indicated and sphingosine-1-phosphate levels determined. (F) Uninduced [3H]serine-labeled U937: Δp85 cells or [3H]serine-labeled U937:Δp85 cells induced to overexpress the dominant-negative form of p85 were stimulated in the presence or absence of anti-MyD-1 (10 μg/mL) for 1 hour at 37°C. Some samples were pretreated (30 minutes) with 0.1% butan-1-ol as indicated and sphingosine-1-phosphate levels determined. Data are expressed as means ± SD of triplicate determinations from 3 to 6 independent experiments. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

MyD-1 coupling to PI 3-kinase and sphingosine kinase is maturation dependent. MyD-1 coupling to PI 3-kinase and sphingosine kinase is maturation dependent. U937 cells (A-B) or U937 cells induced to differentiate toward a macrophage phenotype by culture with dibutyrl cAMP (1 mM) for 48 hours (C-D) were stimulated in the presence (filled symbols) or absence (open symbols) of anti-MyD-1 (10 μg/mL) for the indicated times and PIP3 (A,C) or sphingosine-1-phosphate (B,D) measured as described in “Materials and methods.” Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

Inhibition of TNFα by MyD-1 is regulated by a wortmannin-sensitive signaling cascade, but IL-6 secretion is not. Inhibition of TNFα by MyD-1 is regulated by a wortmannin-sensitive signaling cascade, but IL-6 secretion is not. Human PBMCs were cultured in the presence or absence of 100 ng/mL LPS, 10 μg/mL ILA24 mouse anti-human MyD-1, and 1 nM wortmannin for 24 hours, after which supernatants were analyzed for TNFα or IL-6 production. The results shown are the mean production of (A) TNFα or (B) IL-6 secretion in the presence of 1 nM wortmannin. The data are generated from triplicate samples and are shown as the mean concentration ± 1 SD. In the absence of 1 nM wortmannin, the levels of TNFα produced by anti-MyD-1 plus LPS compared with LPS are significantly reduced, *P < .001, but in the presence of 1 nM wortmannin there is no significant difference between any groups. These data are representative of 4 experiments. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

The measured decrease in TNFα production is not due to alterations in mRNA production but to retention of TNFα within monocytes. The measured decrease in TNFα production is not due to alterations in mRNA production but to retention of TNFα within monocytes. (A) Cytokine mRNA levels were assessed by TaqMan RT-PCR. The results are expressed as the relative change in mRNA compared with a calibrator. (B,C) Intracellular cytokine staining by FACS revealed that TNFα, but not IL-6, was being retained within monocytes after culture in the presence of LPS and anti-MyD-1. The results are expressed as the percentage TNFα-positive CD14+ cells, and these data are representative of 3 experiments. (D) Cell lysates were prepared from human PBMCs stimulated with either LPS (100 ng/mL) plus anti-MyD-1 (10 μg/mL) or LPS plus IgG1 (10 μg/mL) for 24 hours at 37°C. The cell lysates were then subjected to Western blot analysis of TACE expression as described in “Materials and methods.” These lysates were prepared from a single donor and were representative of those from 2 other independent donors. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

The anti-MyD-1 mAb ILA24 does not block binding of a MyD-1Ig fusion protein to CD47 expressed on lymphocytes. The anti-MyD-1 mAb ILA24 does not block binding of a MyD-1Ig fusion protein to CD47 expressed on lymphocytes. Bovine PBMCs were incubated with MyD-1Ig (5 μg/mL) that had been preincubated with either the anti-MyD-1 mAb ILA24 (open histogram, A), the anti-MyD-1 mAb CC149 (open histogram, B), or the relevant isotype-matched control mAbs (filled histograms). In addition, PBMCs were preincubated with the anti-CD47 mAb MEM-122 (open histogram, C) prior to addition of the MyD-1 fusion protein. All antibodies were used at a concentration of 10 μg/mL. MyD-1 binding was detected by labeling with FITC-conjugated goat anti-human IgG and FACS analysis of lymphocytes gated on the basis of forward and side scatter. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology

MyD-1 signaling in monocytes. MyD-1 signaling in monocytes. Ligation of MyD-1 results in the tyrosine phosphorylation of MyD-1 and recruitment of SHP-2. Complex formation allows SHP-2 to act as an adaptor for p85 and results in the activation of PI 3-kinase. Generation of PIP3 leads to the activation of PtdCho-PLD, production of PtdOH, and consequent activation of sphingosine kinase. Rosemary E. Smith et al. Blood 2003;102:2532-2540 ©2003 by American Society of Hematology