Probability Presented by Tutorial Services The Math Center.

Slides:



Advertisements
Similar presentations
Aim: What are ‘Or’ Probabilities?
Advertisements

Beginning Probability
Lecture 18 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.
Probability Probability Principles of EngineeringTM
Independent and 11-3 Dependent Events Warm Up Lesson Presentation
Probability Key. You are given a standard deck of 52 playing cards, which consists of 4 suits: diamonds, hearts, clubs, and spades. Each suit has 13 cards.
1A) A bag contains 4 white marbles, 6 black marbles, and 1 green marble. What is the probability of drawing a white marble? A.C. B.D.
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Probability Ch 14 IB standard Level.
Probability.
Describing Probability
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
1 1 PRESENTED BY E. G. GASCON Introduction to Probability Section 7.3, 7.4, 7.5.
Probability Probability Principles of EngineeringTM
Bell Work: Factor x – 6x – Answer: (x – 8)(x + 2)
Chapter 6 Probabilit y Vocabulary Probability – the proportion of times the outcome would occur in a very long series of repetitions (likelihood of an.
What are the chances of that happening?. What is probability? The mathematical expression of the chances that a particular event or outcome will happen.
Warm up Two cards are drawn from a deck of 52. Determine whether the events are independent or dependent. Find the indicated probability. A. selecting.
Sets, Combinatorics, Probability, and Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProbability.
Sets, Combinatorics, Probability, and Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProbability.
Conditional Probability and Independence If A and B are events in sample space S and P(B) > 0, then the conditional probability of A given B is denoted.
“PROBABILITY” Some important terms Event: An event is one or more of the possible outcomes of an activity. When we toss a coin there are two possibilities,
Simple Mathematical Facts for Lecture 1. Conditional Probabilities Given an event has occurred, the conditional probability that another event occurs.
Warm-Up 1. What is Benford’s Law?
Notes on PROBABILITY What is Probability? Probability is a number from 0 to 1 that tells you how likely something is to happen. Probability can be either.
Chapter 1:Independent and Dependent Events
 History and Relevance of probability theory Probability theory began with the study of game of chance that were related to gambling, like throwing a.
Topic 4A: Independent and Dependent Events Using the Product Rule
Topics What is Probability? Probability — A Theoretical Approach Example 1 Remarks Example 2 Example 3 Assessments Example 4 Probability — A Experimental.
1 CHAPTERS 14 AND 15 (Intro Stats – 3 edition) PROBABILITY, PROBABILITY RULES, AND CONDITIONAL PROBABILITY.
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
Chapter 4 Probability. Definitions A probability experiment is a chance process that leads to well-defined results called outcomes. An outcome is the.
Note to the Presenter Print the notes of the power point (File – Print – select print notes) to have as you present the slide show. There are detailed.
Probability Basic Concepts Start with the Monty Hall puzzle
Dr. Fowler AFM Unit 7-8 Probability. Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.
Probability What’s the chance of that happening? MM1D2 a, b, c.
Do Now. Introduction to Probability Objective: find the probability of an event Homework: Probability Worksheet.
Probability. What is probability? Probability discusses the likelihood or chance of something happening. For instance, -- the probability of it raining.
Aim: ‘And’ Probabilities & Independent Events Course: Math Lit. Aim: How do we determine the probability of compound events? Do Now: What is the probability.
Week 21 Rules of Probability for all Corollary: The probability of the union of any two events A and B is Proof: … If then, Proof:
3.4 Elements of Probability. Probability helps us to figure out the liklihood of something happening. The “something happening” is called and event. The.
Experiments, Outcomes and Events. Experiment Describes a process that generates a set of data – Tossing of a Coin – Launching of a Missile and observing.
Unit 4 Probability Day 3: Independent and Dependent events.
Probability Models Section 6.2. The Language of Probability What is random? What is random? Empirical means that it is based on observation rather than.
1 What Is Probability?. 2 To discuss probability, let’s begin by defining some terms. An experiment is a process, such as tossing a coin, that gives definite.
Essential Ideas for The Nature of Probability
Adding Probabilities 12-5
Introduction to Probability
Aim: What is the multiplication rule?
What Is Probability?.
Chapter 4 Probability Concepts
10.7: Probability of Compound Events Test : Thursday, 1/16
Copyright © 2016, 2013, and 2010, Pearson Education, Inc.
Copyright © 2016, 2013, and 2010, Pearson Education, Inc.
Probability of Multiple Events
PROBABILITY The probability of an event is a value that describes the chance or likelihood that the event will happen or that the event will end with.
PROBABILITY.
True False True False True False Starter – True or False
Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2.
Digital Lesson Probability.
Section 12.2 Theoretical Probability
Section 12.2 Theoretical Probability
Additional Rule of Probability
Events are independent events if the occurrence of one event does not affect the probability of the other. If a coin is tossed twice, its landing heads.
Section 12.2 Theoretical Probability
Thursday 05/16 Warm Up 200 people were surveyed about ice cream preferences. 78 people said they prefer chocolate. 65 people said they prefer strawberry.
Sets, Combinatorics, Probability, and Number Theory
Presentation transcript:

Probability Presented by Tutorial Services The Math Center

Introduction to Probability Probability of an event. Given an event E, the probability of the event, Pr(E), can be found by: n(E) n(E) is the number of occurrences of the event. n(S) is the number of elements in the sample space. n(S) =Pr(E)

Empirical probability. Pr(event) = Number of occurrences of event Number of total trials or observations Example: A coin was flipped four times. It showed heads on the first flip, tails on the second, heads on the third, and heads on the fourth. Find the empirical probability of getting tails. Solution: Pr(Tails) = Number of occurrences of tails Total number of trials = 1 4

Unions and Intersections Pr (E and F both occur) = Pr (E F) Pr (E and F both occur) = Pr (E F) Pr (E or F both occur) Pr (E or F both occur) = Pr (E U F) Pr (E does not occur) Pr (E does not occur) = Pr (E) E F E E S

Solution: Solution: Pr (even)= Pr (divisible by 3) = Pr (even & divisible by 3)=. Pr ( even or divisible by 3) = _4_ + _3_ - _1_ = _6_ = _2_ Inclusive Events If E and F are two inclusive events, the probability that one event or the other will occur is given by Pr (E or F) = Pr (E U F) = Pr (E) + Pr (F) – Pr (E F) Example: A card is drawn from a deck of nine cards numbered 1 through 9. What is the probability that it is even or divisible by 3? E F

Mutually Exclusive Events Pr (E F) = 0, and Pr (E or F) = Pr (E U F) = Pr (E) + Pr (F) For mutually exclusive events E 1, E 2, …, E n Pr (E 1 U E 2 U …U E n ) = Pr(E 1 ) + Pr(E 2 ) + … Pr (E n ). EF S

Solution: Solution: Let E be the event choosing first in class and F be the event choosing second in class. Pr (E) = Pr (F) = Pr ( E U F) = Pr (E) + Pr (F) = _98_ + _72_ = _170_ = _17_ Example: Example: 500 students apply for a scholarship. 98 were students who were first in their class and 72 were second in their class. What is the probability that a student chosen at random is first in their class or second in their class?

Conditional Probability Pr (A | B) = n (A B) n (B) The Probability that A occurs, given that B occurs is given by, Pr (A | B) = n (A B) n (B) Pr (A | B) = Pr (A B) Pr (B) Let A and B be events in the sample space S with Pr (B) > 0. The conditional probability that event A occurs, given that event B occurs is given by, Pr (A | B) = Pr (A B) Pr (B)

Solution: Solution: Pr(sum is 9 sum >8) =Pr(sum is 9) = Pr(Sum > 8) = = = 4 36 Pr(sum is 9 |sum >8) = 4/ 36 = 4 36 Example Example A pair of 6-sided die is rolled. What is the probability that the sum rolled on the die is 9 given that the sum is greater than 8? 10/ = 4 = 2 5 Pr (A | B) = Pr (A B) Pr (B)

Product Rule for Events If A and B are probability events, then the probability of the event A and B can be found by using: i. Pr (A and B) = Pr (A B) = Pr (A) · Pr (B|A) i. Pr (A and B) = Pr (A B) = Pr (A) · Pr (B|A) ii. Pr (A and B) = Pr (A B) = Pr (B) · Pr (A|B) ii. Pr (A and B) = Pr (A B) = Pr (B) · Pr (A|B) If A and B are independent events then: Pr(A and B) = Pr(A B) = Pr(A) · Pr(B)

Solution: Solution: Pr(A) = Pr(pulling a face card) = Pr(B) = Pr(tails on coin) = Pr(A B) = Pr(A) · Pr(B) = 12· 1 = 6 = 3 Example: Independent Events A card is pulled from a deck of 52 cards and a coin is tossed. Find the probability of pulling a face card from the deck (Jack, Queen, and King) and getting a tails on the coin

Probability Tree Draw a probability tree when you have sequential occurrences. Draw a probability tree when you have sequential occurrences. The probability of the event occurring is the product of the probabilities on the one particular branch. The probability of the event occurring is the product of the probabilities on the one particular branch. If an event can be described by two or more paths through a probability tree, its probability is found by adding the probabilities from the paths. If an event can be described by two or more paths through a probability tree, its probability is found by adding the probabilities from the paths. Product of branch probabilities on path leading to F 1 through E 1 Sum of all branch products on paths leading to F1 =Pr(E1| F1)

Example: The Queens jester had made a joke at the expense of the Queen; usually punished by death, but the Queen liked this particular jester. She was going to give him a chance to live. She gave the jester 5 black balls, 5 white balls, and two urns and told him, Put the balls in either urn as you feel. I will flip a coin and pick an urn to pull a ball from. If the ball I pull is black, then you will die. If its white, you will live. If the Jester puts one white ball in the first urn and the rest in the second urn, what is the probability that she chooses the first Urn given that the ball he gets is white ? (1/2) · (1) + (1/2) · (4/9) 1/2 Urn 1 Urn 2 White Ball Black Ball 1 Solution: Pr(U1|W) = = 4949 (1/2)· (1)

Bayes Formula If a probability experiment has n possible outcomes in its first stage given by E 1, E 2, …, E n, and if F 1 is an event in the second stage, then the probability that event E 1 occurs in the first stage, given that F 1 has occurred in the second, is Pr(E 1 | F 1 ) = Pr(E 1 ) · Pr(F 1 | E 1 ) Pr(E1) · Pr(F1| E1) + Pr(E2) · Pr(F1| E2) …+ Pr(En) · Pr(F1 | En)

Bayes Formula The Queens jester had made a joke at the expense of the Queen; usually punished by death, but the Queen liked this particular jester. She was going to give him a chance to live. She gave the jester 5 black balls, 5 white balls, and two urns and told him, Put the balls in either urn as you feel. I will flip a coin and pick an urn to pull a ball from. If the ball I pull is black, then you will die. If its white, you will live. If the Jester puts one white ball in the first urn and the rest in the second urn, what is the probability that she chooses the first Urn given that the ball he gets is white ? The Queens jester had made a joke at the expense of the Queen; usually punished by death, but the Queen liked this particular jester. She was going to give him a chance to live. She gave the jester 5 black balls, 5 white balls, and two urns and told him, Put the balls in either urn as you feel. I will flip a coin and pick an urn to pull a ball from. If the ball I pull is black, then you will die. If its white, you will live. If the Jester puts one white ball in the first urn and the rest in the second urn, what is the probability that she chooses the first Urn given that the ball he gets is white ? Solution: Pr(U1) = 1/2 Pr(U2) = 1/2 Pr(W | U1) = 1 Pr(W | U2) = 4/9 Pr (U1) · Pr(W |U1)_____ _ Pr (U1) · Pr(W |U1) +Pr (U2) · Pr(W |U2) = 1/2 = (1/2)· (1) + (1/2)· (4/9) (1/2)· (1) + (1/2)· (4/9) 13/1813 (1/2)· (1) = 9

Links and Handouts Probability Handout Probability Handout Probability Handout Probability Handout Probability Quiz Probability Quiz Probability Quiz Probability Quiz