Lecture 9.1 Building a FET
Integrated Circuits CPU or Memory First Layer Multi-layer Transistors Capacitors Diode Resistors Multi-layer Wiring Interconnects Bonding Pads Dielectric Heterostructures
MOSFET in Memory Chip Source Gate Drain
Field Effect Transistor (FET)
Voltage Controlled Resistor
Make Mask for Doping Clean wafer surface Oxidize Si Surface How Thick is needed for Doping Mask? Spin on photoresist Image photoresist Develop photoresist Dissolve un-crosslinked photoresist Etch exposed SiO2 down to the Si of the wafer Doping Remove Implantation Mask
Silicon Oxidation Reactor Kinetics Furnace at T=850C Pure Oxygen Si + O2 SiO2 Kinetics BL-Mass Transfer J=Kg(CA-0) SS-Diffusion J=DO-SiO2 (dC/dx) Heat Transfer BL, q=h(T1-T) Solid, q=kSiO2(dT/dx) J=q/Hrxn Grxn<0, Spontaneous
Kinetics Thickness J =(dx/dt) SiO2/MW SiO2 Linear Rate Parabolic Rate Reaction Control First Order BL-MT Control BL-HT Control Parabolic Rate Product diffusion Control Product heat transfer Control J =(dx/dt) SiO2/MW SiO2
Thickness Experiments Parabolic Rate Derive it! dx2/dt=2K K=Ko exp(-Ea/RgT) x=o @ t=0 x= at t= Very common!! Slow Solid State Diffusion Slow Heat Conduction
Mask Thickness To effectively prevent ions penetrating in thick zone Relatively thick Oxide Protection layer Patterned Thinning (etching) of Oxide Protection layer over implantation zone Remove oxide layer with impurities inside
Mask Thickness Transmission through mask T=1/2 erfc[(x-xave)/2 x] To stop 99.99% of implanted materials, T=10-4 Solve for x, the thickness to stop 99.99% of ions.
SiO2 Mask Thickness
Si3N4 Mask Thickness
Photoresist Mask Thickness
Implantation Create Ions in Vacuum Accelerate in Electric Field Impinge onto Silicon Surface Knock out Si ion(s) Charge Balance Travel deep into Silicon
Implantation Effect of Ion Mass
Implant Depth Depth Increases with Energy
Implantation Straggle Increases with Energy
Implantation Concentration Profile Probability Based N(x)=Nmax exp[(x-xave)2/2x2] Nmax=(Ndose/[(2) x])~(0.4 Ndose/ x) Ndose=Qdose/e Qdose= current applied/cm2 σx = projected straggle
Remove Implantation Mask Chemical Mechanical Polishing Stop etch at the desired thickness of the Gate Oxide Dry Etching
Gate Oxide Capacitor connecting Gate to center of npn or pnp heterojunction Capacitance Area Thickness Dielectric constant of oxide
Gate Oxide Capacitance C=oA/d =C/Co =1+e e = electric susceptibility
Metalization Transistor Contacts Base Emitter Gate Planarize/Polish layer to get Flat Surface for next lithography Step
Diffusion Deposition of B or P on surface Heat and Hold for period of time Solid State Diffusion dC/dt=D d2C/dx2 C=Co at x=0 C=0 at x= C=Co(1-erf[x/(4Dt)]) Etch excess B or P from surface
Concentration Profile time
Diffusion Coefficient Self Diffusion D*=Doexp(-Ea/RgT) Diffusion of A in B Depends on A and matrix B DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) d ln [aA]/d ln [XA] = 1+ (d ln [A]/d ln [XA]) d ln [aA]/d ln [XA] ~ 1 for ideal solutions And DAB =(D*A XB + D*B XA) = (D*A (1-XA) + D*B XA) Note Concentration dependence!! DAB ~D*A when XA ~0 , the dilute solution limit Good for dopants
Implant Depth Depth Increases with Energy
Diffusion of Implanted Dopants Diffusion Furnace or Laser Heat Treatment Solid State Diffusion dCA/dt = CT d/dz (DAB dXA /dz) C=Co(z) = CT XA(z) at z=0 C=0 at z= DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) Interdiffusion or mutual diffusion coefficient