Interferometric 3D observations of LIRGs

Slides:



Advertisements
Similar presentations
Extended IR Emission from LIRGs V. Charmandaris, T. Diaz-Santos, (Univ. of Crete) L. Armus & A. Petric (SSC/Caltech)
Advertisements

Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
X-RAY NATURE of the LINER nuclear sources Isabel Márquez (IAA, Spain) 1. Introduction 2. The sample and the data 3. Reduction and analysis X-ray data:
Buried AGNs in nearby ULIRGs Masa Imanishi (National Astronomical Observatory of Japan)
Fluorescent Processes Research School of Astronomy & Astrophysics Fluorescent Processes Feeding The Beast: Infall, Mergers or Starbursts? Mike Dopita (ANU)
Tom Esposito Astr Feb 09. Seyfert 1, Seyfert 2, QSO, QSO2, LINER, FR I, FR II, Quasars, Blazars, NLXG, BALQ…
 MOLECULAR GAS IN THE CORES OF AGN Violette Impellizzeri (NRAO) Alan Roy (MPIfR), Christian Henkel (MPIfR)
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K. Cleary 1, C.R. Lawrence 1, J.A. Marshall 2,
AGN Unification Viewed in the mid-IR Lei Hao Cornell University Spectra.
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
The nature of the dust and gas in the nucleus of NGC 1068.
Ithaca - 19 Jun 2006 VC The IRS GTO ULIRG Program.
Jeff Mangum (NRAO) Jeremy Darling (CU Boulder) Karl Menten (MPIfR Bonn) Christian Henkel (MPIfR Bonn) Meredith MacGregor (NRAO / Harvard University) Brian.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
The overall systematic trends in the kinematics of massive star forming regions Observations of HC 3 N* in hot cores Víctor M. Rivilla 41st Young European.
Neff et al Redshift Magnelli et al ULIRGs LIRGs Normal.
Spitzer Imaging of nearby ULIRGs and their Progeny: Merger-Formed Ellipticals Jason Surace (Spitzer Science Center) ULIRGs: Z.Wang, S.Willner, H.Smith,
Frayer (1) Redshifted Molecular Gas – Evolution of Galaxies David T. Frayer (NRAO) ALMA-Band ALMA Band-2 (68-90 GHz) is a crucial missing band for.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
Large-Scale Winds in Starbursts and AGN David S. Rupke University of Maryland Collaborators: Sylvain Veilleux D. B. Sanders  v = km s -1 Rupke,
Compact nuclear starburst in the central regions of Seyfert galaxies K. Kohno University of Tokyo “The Central Engine of Active Galactic Nuclei” October.
Probing the properties of Luminous IR Galaxies with Spitzer/IRS V. Charmandaris (Univ. of Crete & Cornell Univ.) IRS ULIRG team: J. Houck(PI), L. Armus,
Dense Molecular Medium in Active Galaxies K. Kohno Institute of Astronomy University of Tokyo 4th International Symposium on New Trends of Physics: Recent.
A Cm-Wavelength Search for Pre-Biotic Molecules in Starburst Galaxies: A Case Study for Zw in Starburst Galaxies: A Case Study for Zw Minchin.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Molecular Line Studies and Chemistry in Interacting and Starburst Galaxies Susanne Aalto Department of Radio and Space Science With Onsala Space Observatory.
Subaru AO high-spatial-resolution IR K- and L-band search for buried dual AGNs in merging galaxies Masatoshi Imanishi ( 今西昌俊 ) NAOJ/Subaru Telescope Imanishi+14.
5-9th September 2011 SED2011 conference A new model for the infrared emission of IRAS F Andreas Efstathiou European University Cyprus.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
3-8 µm diagnostics of starbursts and AGNs in the local and high-z Universe Guido Risaliti INAF - Osservatorio Astrofisico di Arcetri & Harvard-Smithsonian.
AKARI infrared 2-5um spectroscopy of nearby luminous infrared galaxies Masa Imanishi Subaru Telescope/NAOJ Spitzer AKARI AGN-starburst connections 2012.
Millimeter interferometric investigations of the energy sources of nearby ULIRGs Masa Imanishi ( NAO Japan )
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
[OII] Lisa Kewley Australian National University.
ULIRGs: IR-Optical-X-ray properties ULIRGs: IR-Optical-X-ray properties Valentina Braito.
Ten parsec scale view of dense molecular medium in the active galaxy NGC 1097 KOHNO Kotaro 河野孝太郎 The University of Tokyo Molecular Gas in Galactic Environments.
The Host Galaxies of Dust-Obscured Gamma-Ray Bursts
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Tracing the coronal emission in AGN with VLT/NACO
Composite profile of the Fe Kα spectral line emitted from a binary system of supermassive black holes Predrag Jovanović1, Vesna Borka Jovanović2 and Duško.
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Subaru and Gemini high-spatial-resolution 20um imaging of nearby LIRGs
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Excitation of H2 in NGC 253 Marissa Rosenberg
Literature Study for the Bachelor Research Project:
MODELS OF EMISSION LINE PROFILES AND SPECTRAL ENERGY DISTRIBUTIONS
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
NGC 1068 Torus Emission Turn-over
HERSCHEL and Galaxies/AGN “dust and gas”
Infrared study of a star forming region, L1251B
Molecular Line Measurements of Luminous Infrared Galaxies (LIRGs) AO 4 David Cotten Alexandre Roman-Lopes Carol Lonsdale Ximena Fernandez Advisor: Chris.
Jelena Kovačević Dojčinović, Luka Č. Popović
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
AGN: Quasars By: Jay Hooper.
Galaxies With Active Nuclei
Millimeter Megamasers and AGN Feedback
Observing Molecules in the EoR
Galaxies With Active Nuclei
Presentation transcript:

Interferometric 3D observations of LIRGs Masa Imanishi NAOJ (National Astronomical Observatory of Japan) NMA (Nobeyama Millimeter Array)

Luminous infrared galaxies(LIRGs) L(IR) > 10^11 Lsun (Normal spiral ~ 10^10 Lsun) optical IR M100(Sbc) LIRGs IR optical Luminous energy source is hidden behind dust

AGNs in LIRGs are buried NLR AGNs obscured by torus-shaped dust Sy2 Detectable via optical spectroscopy LIRGs have a large amount of nuclear gas and dust Buried AGNs are elusive >80% LIRGs = non-Sy

buried AGN or compact SB ? X-ray : AGN >> SB Compton thick (NH>10^24 cm-^2) buried AGN in LIRGs Future X-ray satellite sensitive at E > 10keV

Effects to the surrounding ISM Maloney et al.1996 XDR around an X-ray emitting buried AGN

0.5% * Mc2 SB << 1 pc 6-40% * Mc2 Hot dust (several 100K) Strong mid-IR (10-20um) emission AGN

Millimeter line ratio AGN and SB separated HCN/HCO+ J=1-0 HCN/CO Starburst pure AGN J=1-0 (Kohno astro-ph/0508420)

Resolve multiple-nuclei Our NMA interferometric HCN/HCO+ survey Compared to single-dish obs.: Extract only nuclear emission Resolve multiple-nuclei HCN/HCO+ taken simultaneously

NMA data Single nucleus LIRGs HCN > HCO+ HCN > HCO+ NGC4418 (Buried AGN) UGC5101 (Buried AGN) Mrk273 (Buried AGN) HCN > HCO+ HCN > HCO+ HCN > HCO+ Imanishi et al. 2004 AJ 128 2037 Imanishi et al. 2007 AJ 131 2888

NMA data (II) HCN > HCO+ HCN > HCO+ NMA Mrk 231 IR08572+3915 (Buried AGN) Mrk 231 (type-1 AGN) HCN > HCO+ HCN > HCO+ Imanishi et al. 2007 AJ 134 2366

Spatially resolve multiple components (1) HCN < HCO+ Arp299 Imanishi & Nakanishi 2006 PASJ 58 813 HCN ~ HCO+

Spatially resolve multiple components (2) HCN > HCO+ HCN < HCO+ Mrk 266 Imanishi et al. 2008 in prep

Spectrally resolve multiple components W-nucleus E-nucleus Imanishi et al. 2007 AJ 134 2366 Spatially-unresolved

NMA HCN/HCO+ IR-buried -AGNs ★:LIRGs IR-Starburst HCN/CO

Interpretation High HCN/HCO+ in AGN HCN abundance enhancement Meijerink et al. 2006 2. IR-radiative pumping enhance HCN flux

Molecular gas high abundance ρ∝r^-1.5 low abundance abundance tau=1 sphere ρ∝r^-1.5 (Gierence et al. 1992) abundance surface area flux

HCN/HCO+ abundance: model dependent PDR XDR HCO+/HCN NH high low density=10^5.5 cm^-3 Meijerink et al. 2006

Interpretation High HCN/HCO+ in AGN HCN abundance enhancement 2. IR-radiative pumping enhance HCN flux HCN has a line at 14um Aalto et al. 1995

IR radiative pumping HCN has a line at 14um 14um AGN is a strong Aalto et al. 1995 HCN has a line at 14um HCN(1-0) Cascade AGN is a strong IR 14um emitter (hot dust) 3.5mm 14um

HCO+ line at 12um is weak ! Not detected !

high HCN(1-0)/HCO+(1-0) ratios in nuclei of buried AGN candidates Summary NMA 3D (spatial and velocity) data : high HCN(1-0)/HCO+(1-0) ratios in nuclei of buried AGN candidates Imanishi et al. 2006 AJ 131 2888 Imanishi et al. 2007 AJ 134 2366 Imanishi et al. 2008 in prep

End

High-CR PDR XDR HCN(1-0)/HCO+(1-0) intensity ratio = high (in some parameter range) High-CR PDR XDR 10^4/cc G0= 10^3 10^4 10^5 FX=1.6 16 160 HCN(1-0)/ HCO+(1-0) 0.36 0.34 0.32 21.7 22.6 Meijerink et al. 2006

ULIRGs Compact cores (<500pc) are energetically dominant optical IR(12um) Soifer et al. 2000 Very compact starburst or AGN ?

Outline 1. IR spectroscopy 2. Mm interferometric HCN(1-0) and Select buried AGN candidate 2. Mm interferometric HCN(1-0) and HCO+(1-0) follow-up observation HCN(1-0)/HCO+(1-0) ratio

3-4 um Subaru Buried AGN SB AGN+SB PAH strong (SB): Dust abs. weak Ice 3.1um Bare 3.4um PAH 3.3um PAH strong (SB): Dust abs. weak PAH weak (AGN): Dust abs. strong

5-35 um Spitzer GO1 SB Buried AGN AGN+SB PAH PAH PAH PAH PAH strong : Silicate Abs. weak PAH weak: Silicate Abs. strong

Remaining ambiguity ★ SB AGN Exceptionally centrally-concentrated SB Very high surface brightness >>10^13Lsun/kpc^2 (SB max) Extreme SB? AGN

Interpretation High HCN/HCO+ in AGN HCN abundance enhancement 2. IR-radiative pumping enhance HCN flux 3. Turbulence decreases HCO+ Papadopoulos 2007 Regardless of AGN or SB ? 4. High gas density

Interpretation High HCN/HCO+ in AGN HCN abundance enhancement 2. IR-radiative pumping enhance HCN flux 3. Turbulence decreases HCO+ 4. High gas density N(crit): HCN ~ 5 * HCO+

★:(U)LIRGs High gas density ULIRG : low HCN/CO scenario: unlikely ? PDR XDR HCN/CO HCN/HCO+ ★:(U)LIRGs

NMA/RAINBOW data (III) Buried AGN AGN SB or AGN ? Imanishi et al. 2007 ArXiv/0709.1713

1. Infrared spectral shape PAH PAHs are excited in starburst PDRs but destroyed near an AGN Buried AGN EW(PAH)<<100nm composite Starburst(SB) 3.3um PAH featureless EW(PAH)~100nm 3.4um/3.1um

2. Dust absorption feature strength starburst Buried AGN ULIRG core <500pc Foreground screen dust model strong exp(-Tau) (Imanishi & Maloney 2003 ApJ 588 165) Mixed dust model Dust absorption feature: weak Tau(3.1) < 0.3 Tau(3.4) < 0.2 1-exp(-Tau) Tau Tau(9.7) < 1.7

3. Dust temperature gradient Av(3um) > Av(10um) > Av(20um) Buried AGN Av(3um) =< Av(10um)    =< Av(20um) Starburst dust in edge-on host

How to detect T-gradient ? Spitzer Subaru Av(20um) ~20mag Av(3um) ~110mag Av(10um) ~40mag Optical depth 9.7um 18um Dust temperature gradient

Strong T-gradient (II) Spitzer Subaru Strong abs ULIRGs -> often show T-gradient

Opical non-Seyfert ULIRGs Results nearby(z<0.15) Opical non-Seyfert ULIRGs Luminous buried AGNs = 30-50% 30% ULIRGs = optical Sy (AGN + torus) >50% ULIRGs = luminous AGN NLR

L(dereddened AGN) ~L(IR) Our line-of-sight obscuration: Non-Sy >> Sy2 NLR Sy2: Abs weak Non-Sy: strong L(dereddened AGN) ~L(IR) Amount of nuclear dust: Non-Sy >> Sy2

Interpretation High HCN/HCO+ in AGN HCN abundance enhancement 2. IR-radiative pumping enhance HCN flux 3. Turbulence decreases HCO+ 4. High gas density 5. CR-controlled chemistry Papadopoulos 2007 HCN/HCO+ < 1

★:(U)LIRGs XDR IR-buried -AGNs IR-Starburst PDR NMA (RAINBOW) HCN/HCO+ ★:(U)LIRGs XDR IR-buried -AGNs IR-Starburst PDR HCN/CO Imanishi et al. 2006 AJ 131 2888; 2007 in prep

Summary Imanishi et al. 2006 ApJ 637 114 1. Buried AGNs : 30-50% non-Sy ULIRGs warm & cool 2. Nuclear dust amount: non-Sy ULIRGs > Sy2 ULIRGs Optical Sy (non-)detectability depends on the amount of nuclear dust Imanishi et al. 2006 ApJ 637 114 Imanishi et al. 2007 ApJS astro-ph/0702136

cool == starburst Buried AGNs: both warm/cool FIR colors NLR warm pure buried AGN NLR warm larger dust column cool FIR color F25/F60=0.16(cool) cool == starburst