FirstLine_Tx_ 129 MRI (manually corrected results) Pixel size

Slides:



Advertisements
Similar presentations
Agenda: - Certification Platform: performance for training - I round - II round -Feedback from naives - Beta testers proposals - Congress presentations.
Advertisements

Scan Conversion for Straight Lines
Agenda: - Update on master tracers’ segmentation check - Update validation vs pathology - PMT application submission of “Study on the validation of VSRAD”
Chapter 9 Basic MRI I Mark D. Herbst, MD, PhD. Notice This lecture contained many drawings on the whiteboard, so get these from one of the other students.
Agenda: - New benchmark ICC and Dice’s - Training set for Naïve - Beta testers proposals - Congress presentations XII PMT meeting – September 26, 2012.
Histogram Analysis to Choose the Number of Clusters for K Means By: Matthew Fawcett Dept. of Computer Science and Engineering University of South Carolina.
McDaniels – Sept 12, Outline Uncertainty in ADC value Correction Manuscript.
FNAL TB09 Plots Alessandra Borgia Syracuse Unviersity Marina Artuso, Jianchun Wang, Ray Mountain January 20, 2010.
New data Threshold angle – 1-pixel – ALL 2-pixel – Balance 2-pixel – (all-pixel) Cluster angle HV scan – Perpendicular track – 10 degrees.
1 ADC Calculations Lars Ewell Radiation Oncology University of Arizona Medical Center 2/8/08 1.
Metric Conversions w/o Dimensional Analysis Just move the decimal!!
3D CT Image Data Visualize Whole lung tissues Using VTK 8 mm
Base Defense Net M/L MOH S RS Base Defense. Rotation #1 - Serve Net M/L 6 M3M3 OH 2 OH 5 S1S1 RS 4 Rotation #1 - Serve.
Software Development For Correction of Gradient- Nonlinearity Distortions in MR Images T.S. Lee, K.E. Schubert Computer Science CSUSB R.W. Schulte Radiation.
MRI Correction In 5-7 Minutes Dr. Keith Evan Schubert.
An Example Using PET for Statistical Parametric Mapping An Example Using PET for Statistical Parametric Mapping Jack L. Lancaster, Ph.D. Presented to SPM.
FM Lavender, RT Meades, A Al-Nahhas, KS Nijran Imperial College Healthcare NHS Trust, London, UK.
Keith Worsley Department of Mathematics and Statistics, and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Correlation.
MRI Image Segmentation for Brain Injury Quantification Lindsay Kulkin BRITE REU 2009 Advisor: Bir Bhanu August 20, 2009.
2004 All Hands Meeting Analysis of a Multi-Site fMRI Study Using Parametric Response Surface Models Seyoung Kim Padhraic Smyth Hal Stern (University of.
ExactEstimate 300 msec.
Correlation random fields, brain connectivity, and astrophysics Keith Worsley Arnaud Charil Jason Lerch Francesco Tomaiuolo Department of Mathematics and.
Complete the following metric conversions using the correct number of significant figures a cm to m   b m to km c cm to mm d
Correct yesterday’s work Metric system: volume Thursday 10/08/09 Date Activity Page 10/08 Metric Volume.
Correction of bias field artifact in T1w MR images of the thigh and calf muscles Correction de contraste d’images IRM Projet A.
ICC_MAN (n=3385 total processed MRI with M status ): min max mean median std range 25 quartile 50 quartile 75 quartile.
Tom S. Lee, Keith E. Schubert Reinhard W. Schulte
© T Madas. 1 m = cm cm = mm 10 1 km = m m = cm cm = mm 40 3 km = m m = cm cm = mm km = m cm = m 4 80.
M M M M 5. Not Listed
3-D cs5984: Information Visualization Chris North.
1) / in ORIG DE 003 ReceiveCoilName 8HRBRAIN PixelSpacing DE 006 ReceiveCoilName HEAD PixelSpacing in GENESIS:

Factor completely EXAMPLE 4 Factor the polynomial completely. a.a. n 2 – + 2n –1 SOLUTION a.a. The terms of the polynomial have no common monomial factor.
实验十四 紫外线灭菌  一、实验背景及目的:  灭菌是一种杀灭微生物的措施。紫外线灭菌 是物理灭菌因素之一。  1. 了解紫外线灭菌的原理;  2. 学习、掌握紫外线灭菌的方法。 版权所有 未经作者同意 请勿使用.
Why Study Robotics? shows/curiosity/topics/c-angle-why- should-we-encourage-young-people- study-robotics.htm.
NA-MIC National Alliance for Medical Image Computing Analysis and Results of Brockton VA study: Controls vs Schizophrenics Personality Disorder Martin.
Submitted by :- Sridev Shyam K.V. Problem Definition.
Capture software can be utilized for basic scanning needs, but takes you to a whole new level from a "capture" perspective. These.
血液成分分离的标准化解决方案 全自动血液成分分离机使用介绍 江苏省血液中心 成分室 蔡莉 2013 年 9 月.
高压注射器使用 放射科 : 叶晓欣. 开机作业  1. 检查设备电源系统 ( 如插座、开关、电线及 联机接头各部位是否有异常或破损 )  2. 各个部位是否有异常  3. 按正常程序开机,按主控制板的开关按键.
The reading is 7.38 mm. The reading is 7.72 mm.
T. Matsushita 1 QA: Fibre Counting Software 1. Take CCD image of comb/connector 2. Cut noise 3. Find bundles: Nearest Neighbour Clustering, merge clusters.
Convert into scientific notation:
Quantitative MRI study of Pineal Gland in MS
720 cm = ? m A.) 0.72 m B.) 7200 m C.) 7.2 m D.) 72,000 m L W.
35 m = ______ cm 250 g = ______ kg 650 mm = ______ m 230 m = ______ km
Discovery set: 10 RRMS (2) vs 9 SPMS (3)
Computed tomography (CT) scan of CC-TGA. A
Content-Sensitive Screening in Black and White
اثرات حلال ها برسلامتي. اثرات حلال ها برسلامتي.
امتحان آسکی دستیاران عفونی
Use pictures, words and equations to show your work.
Weichert.com Admin Tutorial
OBLIQUE AXIAL ALONG TANDEM
Basic MRI I Mark D. Herbst, MD, PhD
Cardiac MRI demonstrating LV ejection fraction 49%(57-77), RV ejection fraction 31% (47-67%) and hypokineses.
FirstLine_Tx_ 129 MRI (manually corrected results) Pixel size
The whole is… DICE PATTERN PART-WHOLE EARLY NUMBER SENSE.
Metric System SOL 6.9.
PXD Alarms Florian Lütticke
Sig Fig Game Winning team earns 5 Bonus Points on the Sig Fig Quiz next week 5 Levels With each level increase, correct answers earn more points May.
To be able to find percentages
Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma In this multicenter evaluation, artificial intelligence.
Task 3: Three numbers Circle two dice that add to make 6
The Image The pixels in the image The mask The resulting image 255 X
Figure 3 Correlation of lipid indexes to MRI measures of disease severity in multiple sclerosis Correlation of lipid indexes to MRI measures of disease.
Thing / Person:____________________ Dates:_________________
Digital Journal: Fall Flyer
Automating stroke lesion segmentation in brain images using a multi-model multi-path convolutional neural network Yunzhe.
Converting Between Measures
Presentation transcript:

FirstLine_Tx_02142013 129 MRI (manually corrected results) Pixel size 0.7813 Pixel size 0.8594 Pixel size 0.9375

BPF vs T2, natural clustering pattern

Cases of interest, based on cutoff 2 clusters 17843 15302 16056

% difference of raw data 02/14/2013 REFNO CSF, ml ICC, ml T2, ml BPF PIXELSIZE, mm Slice thikness, mm FirstLineTx_02142013 15302 273.44 1749.41 0.82 0.8437 0.9375 3.0000 CASE #67 16056 314.01 1328.26 18.16 0.7636 CASE #37 17292 266.16 1405.96 2.33 0.8107 0.7813 CASE #8 18188 169.69 1427.66 2.55 0.8811 0.8594 CASE #30 17843 150.85 1163.86 10.47 0.8704 CASE #52 19338 102.76 1258.65 2.64 0.9184 CASE #1 REFNO Date of Scan Pixel size T2 LV (cc) T2LV , ml % difference of raw data COV 15302 07/10/06 0.9375 1.32 0.82 38% 33% 16056 10/26/06 21.08 18.16 14% 11% 17292 04/20/07 0.69 2.33 -238% 77% 18188 08/15/07 1.95 2.55 -31% 19% 17843 10/20/05 9.71 10.47 -8% 5% 19338 08/23/06 0.57 2.64 -363% 91% mean 39% 5/15/13 refno pixsz volA volB Apixels Bpixels ABpixels DICE 15302 0.9375 1.28 0.82 486 311 101 0.25345 16056 20.91 18.1 7932 6888 4719 0.636842 17292 0.7813 0.683 2.33 373 1275 214 0.259709 17843 9.61 10.46 3646 3969 2695 0.707814 18188 0.8594 1.92 2.55 868 1153 395 0.390896 19338 0.78125 0.527 2.64 288 1440 77 0.08912 7/24/13

% difference of raw data 5/15/13 REFNO Pixel size T2 LV (cc) T2LV , ml % difference of raw data COV 15302 0.9375 mm 1.32 0.82 38% 33% refno pixsz volA volB Apixels Bpixels ABpixels DICE 15302 0.9375 1.28 0.82 486 311 101 0.25345 7/24/13 REFNO Pixel size Rater1 (ml) Rater2 , ml 15302 0.9375 mm 1.281 0.82 8/8/13

% difference of raw data REFNO Pixel size T2 LV (cc) T2LV , ml % difference of raw data COV 16056 0.9375 21.08 18.16 14% 11% 5/15/13 refno pixsz volA volB Apixels Bpixels ABpixels DICE 16056 0.9375 20.91 18.1 7932 6888 4719 0.636842 7/24/13 REFNO Pixel size Rater1,ml Rater2 , ml 16056 0.9375 20.914 18.162 8/8/13

% difference of raw data REFNO Pixel size T2 LV (cc) T2LV , ml % difference of raw data COV 17843 0.9375 9.71 10.47 -8% 5% 5/15/13 refno pixsz volA volB Apixels Bpixels ABpixels DICE 17843 0.9375 9.61 10.46 3646 3969 2695 0.707814 7/24/13 REFNO Pixel size Rater1 (ml) Rater2 , ml 17843 0.9375 9.613 10.465 8/8/13