EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010

Slides:



Advertisements
Similar presentations
L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 3 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L04 24Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2002 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L4 January 271 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2005 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 2 OUTLINE Important quantities
ECSE-6230 Semiconductor Devices and Models I Lecture 5
Introduction to Solid-state Physics Lecture 2
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Lecture 5 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2010
Lecture #8 OUTLINE Generation and recombination
Read: Chapter 2 (Section 2.3)
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Direct and Indirect Semiconductors
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2009
ECE 875: Electronic Devices
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
Carrier Transport Phenomena And Measurement Chapters 5 and 6 22 and 25 February 2019.
Carrier Transport Phenomena And Measurement Chapters 5 and 6 13 and 15 February 2017.
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

Shockley-Read- Hall Recomb Indirect, like Si, so intermediate state Ec Ec ET Ef Efi Ev Ev k L14 06Oct2010

S-R-H trap characteristicsM&K The Shockley-Read-Hall Theory requires an intermediate “trap” site in order to conserve both E and p If trap neutral when orbited (filled) by an excess electron - “donor-like” Gives up electron with energy Ec - ET “Donor-like” trap which has given up the extra electron is +q and “empty” L14 06Oct2010

S-R-H trap char. (cont.) If trap neutral when orbited (filled) by an excess hole - “acceptor-like” Gives up hole with energy ET - Ev “Acceptor-like” trap which has given up the extra hole is -q and “empty” Balance of 4 processes of electron capture/emission and hole capture/ emission gives the recomb rates L14 06Oct2010

tpo = (Ntvthsp)-1, where sn,p~p(rBohr,n.p)2 S-R-H recombination Recombination rate determined by: Nt (trap conc.), vth (thermal vel of the carriers), sn (capture cross sect for electrons), sp (capture cross sect for holes), with tno = (Ntvthsn)-1, and tpo = (Ntvthsp)-1, where sn,p~p(rBohr,n.p)2 L14 06Oct2010

S-R-H net recom- bination rate, U In the special case where tno = tpo = to = (Ntvthso)-1 the net rec. rate, U is L14 06Oct2010

S-R-H “U” function characteristics The numerator, (np-ni2) simplifies in the case of extrinsic material at low level injection (for equil., nopo = ni2) For n-type (no > dn = dp > po = ni2/no): (np-ni2) = (no+dn)(po+dp)-ni2 = nopo - ni2 + nodp + dnpo + dndp ~ nodp (largest term) Similarly, for p-type, (np-ni2) ~ podn L14 06Oct2010

S-R-H rec for excess min carr For n-type low-level injection and net excess minority carriers, (i.e., no > dn = dp > po = ni2/no), U = dp/tp, (prop to exc min carr) For p-type low-level injection and net excess minority carriers, (i.e., po > dn = dp > no = ni2/po), U = dn/tn, (prop to exc min carr) L14 06Oct2010

Minority hole lifetimes Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 10 μs, Nref = 1×1017/cm2, and CA = 1.8×10-31cm6/s. L14 06Oct2010

Minority electron lifetimes Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991 The parameters used in the fit are τo = 30 μs, Nref = 1×1017/cm2, and CA = 8.3×10-32 cm6/s. L14 06Oct2010

References for Part A Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. Mark E. Law, E. Solley, M. Liang, and Dorothea E. Burk, “Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991. D.B.M. Klaassen; “A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION”, Electron Devices Meeting, 1990. Technical Digest., International 9-12 Dec. 1990 Page(s):357 – 360. David Roulston, Narain D. Arora, and Savvas G. Chamberlain “Modeling and Measurement of Minority-Carrier Lifetime versus Doping in Diffused Layers of n+-p Silicon Diodes”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-29, NO. 2, FEBRUARY 1982, pages 284-291. M. S. Tyagi and R. Van Overstraeten, “Minority Carrier Recombination in Heavily Doped Silicon”, Solid-State Electr. Vol. 26, pp. 577-597, 1983. Download a copy at Tyagi.pdf. L14 06Oct2010

S-R-H rec for deficient min carr If n < ni and p < pi, then the S-R-H net recomb rate becomes (p < po, n < no): U = R - G = - ni/(2t0cosh[(ET-Efi)/kT]) And with the substitution that the gen lifetime, tg = 2t0cosh[(ET-Efi)/kT], and net gen rate U = R - G = - ni/tg The intrinsic concentration drives the return to equilibrium L14 06Oct2010

The Continuity Equation The chain rule for the total time derivative dn/dt (the net generation rate of electrons) gives L14 06Oct2010

The Continuity Equation (cont.) L14 06Oct2010

The Continuity Equation (cont.) L14 06Oct2010

The Continuity Equation (cont.) L14 06Oct2010

The Continuity Equation (cont.) L14 06Oct2010

The Continuity Equation (cont.) L14 06Oct2010

The Continuity Equation (cont.) L14 06Oct2010

References * Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996 [M&K] Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. ISBN: 0-471-59398-2. L14 06Oct2010