Figure 6 Injection of mesenchymal stem cells in perianal fistulas

Slides:



Advertisements
Similar presentations
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Advertisements

Figure 3 Low-grade inflammation in FGID
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 7 Treatment algorithm for perianal fistulizing disease
Figure 1 Patients cured of HCV infection
Figure 1 Gut microorganisms at the intersection of several diseases
Figure 5 Lipid droplet consumption
Figure 4 Simple perianal fistula
Figure 5 Two approaches to therapeutic genome editing
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Figure 3 The T-cell cytokine tree in IBD
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Figure 1 Towards precision PRRT for neuroendocrine tumours
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Suggested biopsy-avoiding diagnostic pathway for coeliac disease Figure 1 | Suggested biopsy-avoiding diagnostic pathway for coeliac disease.
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Proinflammatory immune cells and their crosstalk in patients with IBD Figure 4 | Proinflammatory immune cells and their crosstalk in patients.
Figure 1 Definition and concept of ACLF
Figure 1 Functions, features and phenotypes of HSCs in normal and diseased livers Figure 1 | Functions, features and phenotypes of HSCs in normal and diseased.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Complex perianal fistula
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 1 Median coverage and distribution by
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Figure 2 New therapeutic approaches in IBD with their specific targets
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Distribution of markers of active HBV infection
Figure 1 New therapeutic approaches in IBD therapy based on blockade of T-cell homing and retention Figure 1 | New therapeutic approaches in IBD therapy.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 1 NAFLD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 The spread of colorectal cancer metastases
Presentation transcript:

Figure 6 Injection of mesenchymal stem cells in perianal fistulas Figure 6 | Injection of mesenchymal stem cells in perianal fistulas. First the fistula internal opening is closed using polygalactin absorbable stitches. Subsequently, a suspension of 120 million mesenchymal stem cells are injected, distributing the cells into the tissue adjacent to all fistula tracts (60 million, blue spots) and internal openings (60 million, yellow spots). Panés, J. & Rimola, J. (2017) Perianal fistulizing Crohn’s disease: pathogenesis, diagnosis and therapy Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.104