MOMENT DISTRIBUTION BY Hardy Cross, 1930

Slides:



Advertisements
Similar presentations
7. MOMENT DISTRIBUTION METHOD
Advertisements

Exam 1, Fall 2014 CE 2200.
ENGR-1100 Introduction to Engineering Analysis
1. For a publicity stunt to promote a popular children’s TV show, an entertainment company’s engineers must design a static hoist to suspend Bernard the.
ENGR-1100 Introduction to Engineering Analysis
DISPLACEMENT MEDTHOD OF ANALYSIS: MOMENT DISTRIBUTION
Beams Shear & Moment Diagrams E. Evans 2/9/06. Beams Members that are slender and support loads applied perpendicular to their longitudinal axis. Span,
Axially loaded member Axial load and normal stress under equilibrium load, Elastic Deformation.
Engineering Mechanics: Statics
Moment Area Theorems: Theorem 1:
5. ANALYSIS OF INDETERMINATE STRUCTURES BY FORCE METHOD
6. SLOPE DEFLECTION METHOD. 6.1 SLOPE DEFLECTION METHOD - AN OVERVIEW 6.2 INTRODUCTION 6.3 DETAILS OF SLOPE DEFLECTION METHOD 6.4 SOLUTION OF PROBLEMS.
CIVL3310 STRUCTURAL ANALYSIS Professor CC Chang Chapter 11: Displacement Method of Analysis: Slope-Deflection Equations.
REMINDERS HW#5 due Friday Feb 28 Read 4.5 for Friday 1.
Analysis of Beams and Frames Theory of Structure - I.
ERT 348 Controlled Environment Design 1
Engineering Mechanics: Statics
Chapter 6: Structural Analysis
Eng. Tamer Eshtawi First Semester
UNIT - II Shear Force Diagrams and Bending Moment Diagrams Lecture Number -1 Prof. M. J. Naidu Mechanical Engineering Department Smt. Kashibai Navale College.
WORKSHEET 6 TRUSSES. Q1 When would we use a truss? (a) long spans, loads not too heavy (b) when want to save weight (d) when want light appearance (c)
Objective: Students will use proportional parts of triangles and divide a segment into parts. S. Calahan 2008.
PROBLEMS ON TORSION.
By Prof. Dr. Wail Nourildean Al-Rifaie
A simply supported beam of span 8 m carries two concentrated loads of 32 kN and 48 kN at 3m and 6 m from left support. Calculate the deflection at the.
Transformations on the Coordinate Plane: Translations and Rotations.
Structural Analysis 7 th Edition in SI Units Russell C. Hibbeler Chapter 12: Displacement Method of Analysis: Moment Distribution.
Geometry: Plane Figures Chapter. point A point marks a location. A A B B line segment the part of the line between 2 points endpoints.
60 kN 100 kN 130 kN Q.1 Determine the magnitude, sense, and direction of the resultant of the concurrent force system below
Slope Deflection Method
Structural Analysis 7 th Edition in SI Units Russell C. Hibbeler Chapter 11: Displacement Method of Analysis: Slope-Deflection Equations.
Tutorial 7_Review MECH 101 Liang Tengfei Office phone : Mobile : Office hour : 14:00-15:00 Fri 1.
南亚和印度.
PRESENTED BY Prof. Hanuamanth Raj Department of Mechanical Engineering, Sahaydri College of Engineering, Adyar Mangalore SHEAR FORCE AND BENDING MOMENT.
7. MOMENT DISTRIBUTION METHOD
C. K. Pithawalla College of Engg. & Tech.
Solid Mechanics Course No. ME213.
ME 245 Engineering Mechanics and Theory of Machines Portion 4
ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY
shear force and bending moment diagram
Alpha College of Engineering and Technology
Aim: Full House Grid: 9 Grid Play: Calculate answer & cross it off
Combinations COURSE 3 LESSON 11-3
Structural Analysis 7th Edition in SI Units
SOLID MECHANICS II (BDA 3033) CHAPTER 2:
STATICS (ENGINEERING MECHANICS-I)
ME 141 Engineering Mechanics Portion 4 Analysis of Structure
TUTORIAL 2.
Structural Analysis II
Equilibrium Of a Rigid Body.
AB AC AD AE AF 5 ways If you used AB, then, there would be 4 remaining ODD vertices (C, D, E and F) CD CE CF 3 ways If you used CD, then, there.
Equilibrium Of a Rigid Body.
Structural Analysis II
Equilibrium Of a Rigid Body.
1. For a publicity stunt to promote a popular children’s TV show, an entertainment company’s engineers must design a static hoist to suspend Bernard the.
Forces, Moment, Equilibrium and Trusses
Structural Analysis UNIT 4 MOMENT DISTRIBUTION METHOD
Examples.
Assignment 1 Determine magnitude and direction of resultant force of the following problems.
7. MOMENT DISTRIBUTION METHOD
Structural Loading.
Revision.
Equilibrium Of a Rigid Body.
Structural Analysis II
Structural Loading.
TUTORIAL 2.
Revision.
Engineering Mechanics: Statics
Revision.
TUTORIAL 2.
Presentation transcript:

MOMENT DISTRIBUTION BY Hardy Cross, 1930 DISPLACEMENT MEHTOD OF ANALYSIS

Sign Convention: Clockwise moment: Positive Counterclockwise moment: Negative Fixed-End Moments (FEMS): MAB +MBA

Far End Fixed Member Stiffness Factor:

Far End Hinged  A M M’

DISTRIBUTION FACTOR (DF) M M1 M2 M3 K1 K2 K3

Determine the moment at each end 10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m EI = constant

10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m

10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m

10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m

10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m

10 kN 2 kN/m 1.5 kN/m AB 3.75 m 3.75 m 5 m 6.25 m SPAN BC CD L 7.5 m 1/7.5 1/5 1/6.25 JOINT A B C D DF 0.4 0.6 0.556 0.444 1 FEM -9.375 9.375 -4.167 4.167 -4.883 4.883 BAL CO 5.208 -0.716 -2.083 -3.125 0.398 0.318 -4.883 -1.042 0.199 -1.562 -2.442 0.159 0.199 -4.004 -0.080 -0.119 2.226 1.778 -0.159 -0.040 1.113 -0.06 -0.080 0.889

10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m JOINT A B C D DF 0.4 0.4 0.6 0.556 0.444 1 CO -0.040 1.113 -0.06 -0.08 0.889 -0.140 -0.889 BAL -0.445 -0.668 0.078 0.062 -0.223 0.039 -0.334 0.031 -0.779 -0.016 -0.023 0.433 0.346 -0.031 -0.008 0.217 -0.012 0.173 -0.028 -0.087 -0.130 0.016 0.012 -0.173 -0.044 0.008 -0.065 0.006

10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m JOINT A B C D DF 0.4 0.4 0.6 0.556 0.444 1 CO -0.045 0.008 -0.065 -0.087 0.006 0.152 -0.006 BAL -0.003 -0.005 0.085 0.067 -0.002 0.043 0.034 -0.017 -0.026 0.003 -0.034 SUM -10.753 6.642 -6.642 5.37 -5.391 MOM -10.75 6.60 -6.60 5.40 -5.40

MODIFIED STIFFNESS METHOD 10 kN 2 kN/m 1.5 kN/m 3.75 m 3.75 m 5 m 6.25 m SPAN AB BC CD L 7.5 m 5 m 6.25m K 1/7.5 1/5=0.2 (3/4)1/6.25=0.12 JOINT A B C D DF 0.4 0.6 0.625 0.375 1 FEM -9.375 9.375 -4.167 4.167 -4.883 4.883 BAL CO 5.208 -0.716 -2.083 -3.125 0.448 0.269 -4.883 -1.042 0.224 -1.563 -2.442 0.224 -4.005 -0.09 -0.134 2.503 1.502 -0.045 1.252 -0.067 PRESENTED BY: Engr. Carol E. Dungca

AB SPAN BC CD JOINT A B C D DF 0.4 0.6 0.625 0.375 1 CO -0.45 1.252 0.4 0.6 0.625 0.375 1 CO -0.45 1.252 -0.067 BAL -0.501 -0.751 0.042 0.025 -0.251 0.021 -0.376 -0.008 -0.013 0.235 0.141 -0.004 0.118 -0.007 -0.047 -0.071 0.004 0.003 SUM -10.717 6.646 -6.646 5.386 -5.386 FEM

AB SPAN BC CD L 6 m 9 m 4m K 1/6 (3/4)(1/9)=1/12 JOINT A B C D DF 2/3 10kN/m 30 kN A 6m B 9m C 4m D SPAN AB BC CD L 6 m 9 m 4m K 1/6 (3/4)(1/9)=1/12 JOINT A B C D DF 2/3 1/3 1 FEM -67.5 67.5 -120 BAL CO SUM -67.5 -52.5 45 22.5 52.5 22.5 26.25 26.25 -17.5 -8.75 -8.75 13.75 27.5 -27.5 120 -120 13.75 27.5 -27.5 120 -120

Determine the member end moment for the three span continuous beam shown due to the uniformly distributed load and due to the support settlement of 15 mm at B, 36 mm at C, and 18 mm at D. E = 200 GOPa, I = 1705 x 106 mm4 32 kN/m A 5m B 5m C 5m D

32 kN/m 0.015 m 0.036 m 0.018 m 0.021 m 32 kN/m ∆ ∆

∆ ∆ PRESENTED BY: Engr. Carol E. Dungca

∆ ∆ PRESENTED BY: Engr. Carol E. Dungca

SPAN AB BC CD K ¾(1/5) = 0.15 1/5 = 0.2 ¾(1/5) JOINT A B C D DF 1 0.429 0.571 FEM(LOAD) FEM(SETTLE) -66.67 -1227.6 66.67 -1718.64 1473.12 FEM(total) -1294.27 -1160.93 -1785.31 -1651.97 1406.45 1539.79 BAL CO -2946.24 -245.52 1294.27 1263.937 1682.303 140.192 105.328 -1539.79 647.135 70.096 841.152 -769.895 717.231 71.257 -307.692 -409.539 -40.688 -30.569 -20.344 -204.770 -20.344 -204.770 8.728 11.616 116.924 87.846 58.462 5.808 58.462 5.808 -25.080 -33.382 -3.316 -2.492 PRESENTED BY: Engr. Carol E. Dungca

SPAN AB BC CD K ¾(1/5) = 0.15 1/5 = 0.2 ¾(1/5) JOINT A B C D DF 1 0.429 0.571 BAL CO -1.658 -16.691 0.711 0.947 9.531 7.160 4.766 0.474 -2.045 -2.721 -0.271 -0.203 -0.136 -1.379 0.058 0.078 0.787 0.592 -25.080 -33.382 -3.316 -2.492 PRESENTED BY: Engr. Carol E. Dungca

SPAN AB BC CD K ¾(1/5) = 0.15 1/5 = 0.2 ¾(1/5) JOINT A B C D DF 1 0.429 0.571 BAL 0.058 0.078 0.787 0.592 CO 0.394 0.039 -0.169 -0.225 -0.022 -0.017 -0.011 -0.113 0.005 0.006 0.065 0.048 0.033 -0.014 -0.019 SUM/FEM 424.62 -424.644 -804.234 804.234 PRESENTED BY: Engr. Carol E. Dungca

10 kN 5kN/m 50 kN m JOINT A B C D MEMBER AB BA BC CB CD DC K 0.188 A 2EI B 8m C 8m D 4m 4m 3EI 3EI JOINT A B C D MEMBER AB BA BC CB CD DC K (3/4)(2/8)= 3/16= 0.188 0.188 0.375 0.281 DF 1 0.334 0.666 0.572 0.428 JT. COUPLE CO FEM -10 10 -26.667 26.667 BAL 50 16.7 33.300 16.650 -16.667 16.650 10 5.567 11.100 -9.524 -7.126 -26.667 5 -4.762 5.550 -13.334 PRESENTED BY: Engr. Carol E. Dungca

JOINT A B C D MEMBER AB BA BC CB CD DC DF 1 0.334 0.666 0.572 0.428 CO -4.762 5.550 -13.334 0.238 -7.784 BAL -0.079 -0.159 4.452 3.332 2.226 -0.080 -0.743 -1.483 0.046 0.034 0.023 -0.741 -0.008 -0.015 0.424 0.317 FEM 36.437 13.563 43.444 PRESENTED BY: Engr. Carol E. Dungca

Determine the internal moment acting at each joint Determine the internal moment acting at each joint. Assume A,D, and E are pinned and B and C are fixed joints. E = 29 x 103 ksi PRESENTED BY: Engr. Carol E. Dungca

JOINT A B C E D AB BA BD BC CB CE EC DB K 0.125 0.047 0.056 0.078 DF 1 MEMBER AB BA BD BC CB CE EC DB K 0.125 0.047 0.056 0.078 DF 1 0.548 0.206 0.246 0.418 0.582 FEM -12 12 -108 108 -30 30 BAL CO -96 78 12 52.608 19.776 23.616 -32.604 -45.396 -30 6 -15 -16.302 11.808 -10.302 -3.192 5.645 2.122 2.534 1.334 1.858 0.667 1.267 0.667 1.267 -0.366 -0.137 -0.164 -0.530 -0.737 75.887 21.761 -97.649 89.275 -89.275 PRESENTED BY: Engr. Carol E. Dungca