Example: Feature selection Given random variables Y, X1, … Xn Want to predict Y from subset XA = (Xi1,…,Xik) Want k most informative features: A*

Slides:



Advertisements
Similar presentations
Beyond Convexity – Submodularity in Machine Learning
Advertisements

Submodularity for Distributed Sensing Problems Zeyn Saigol IR Lab, School of Computer Science University of Birmingham 6 th July 2010.
Naïve-Bayes Classifiers Business Intelligence for Managers.
1 Some Comments on Sebastiani et al Nature Genetics 37(4)2005.
1 MPE and Partial Inversion in Lifted Probabilistic Variable Elimination Rodrigo de Salvo Braz University of Illinois at Urbana-Champaign with Eyal Amir.
AB 11 22 33 44 55 66 77 88 99 10  20  19  18  17  16  15  14  13  12  11  21  22  23  24  25  26  27  28.
A) 80 b) 53 c) 13 d) x 2 = : 10 = 3, x 3 = 309.
Efficient Informative Sensing using Multiple Robots
1 Introduction to Computability Theory Lecture5: Context Free Languages Prof. Amos Israeli.
Near-optimal Nonmyopic Value of Information in Graphical Models Andreas Krause, Carlos Guestrin Computer Science Department Carnegie Mellon University.
Sets Definition of a Set: NAME = {list of elements or description of elements} i.e. B = {1,2,3} or C = {x  Z + | -4 < x < 4} Axiom of Extension: A set.
Sensor placement applications Monitoring of spatial phenomena Temperature Precipitation... Active learning, Experiment design Precipitation data from Pacific.
Part 3 of 3: Beliefs in Probabilistic Robotics. References and Sources of Figures Part 1: Stuart Russell and Peter Norvig, Artificial Intelligence, 2.
Review of Probability.
Learning Submodular Functions
Adding and Subtracting Rational Expressions
Lesson 1 Using properties of real numbers. A set is a collection of objects  If all the members of one set are also members of a second set, then the.
Инвестиционный паспорт Муниципального образования «Целинский район»
Carnegie Mellon Maximizing Submodular Functions and Applications in Machine Learning Andreas Krause, Carlos Guestrin Carnegie Mellon University.
Greedy is not Enough: An Efficient Batch Mode Active Learning Algorithm Chen, Yi-wen( 陳憶文 ) Graduate Institute of Computer Science & Information Engineering.
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
Chapter 3: Maximum-Likelihood Parameter Estimation l Introduction l Maximum-Likelihood Estimation l Multivariate Case: unknown , known  l Univariate.
5 Maximizing submodular functions Minimizing convex functions: Polynomial time solvable! Minimizing submodular functions: Polynomial time solvable!
Tractable Higher Order Models in Computer Vision (Part II) Slides from Carsten Rother, Sebastian Nowozin, Pusohmeet Khli Microsoft Research Cambridge Presented.
5-5 Solving Quadratic Equations Objectives:  Solve quadratic equations.
Adding SubtractingMultiplyingDividingMiscellaneous.
Submodular set functions Set function z on V is called submodular if For all A,B µ V: z(A)+z(B) ¸ z(A[B)+z(AÅB) Equivalent diminishing returns characterization:
The Distributive Property
4-3 Equivalent Expressions Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
2-2 The Distributive Property Distributive Property of Multiplication over Addition : Ex. 3(2+6) Multiplication Addition You can distribute a factor to.
Objective- To use the distributive property to simplify variable expressions. Distributive Property a(b + c) = ab + ac or a(b - c) = ab - ac Order of OperationsDistributive.
Probability and Statistics in Environmental Modeling.
Submodularity Reading Group Matroids, Submodular Functions M. Pawan Kumar
5.2 Properties of Exponents and Power Functions Product Property of Exponents a m *a n = a m+n Quotient Property of Exponents a m /a n = a m-n Definition.
Objective The student will be able to: multiply two polynomials using the distributive property.
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
Bias Management in Time Changing Data Streams We assume data is generated randomly according to a stationary distribution. Data comes in the form of streams.
Submodularity Reading Group Matroids, Submodular Functions M. Pawan Kumar
Text Classification and Naïve Bayes Formalizing the Naïve Bayes Classifier.
Chapter 1: Outcomes, Events, and Sample Spaces men 1.
4 Key Features in ABS Filament for Qualitative 3D Printing
Applied Discrete Mathematics Week 1: Logic and Sets
Monitoring rivers and lakes [IJCAI ‘07]
Near-optimal Observation Selection using Submodular Functions
Math a Discrete Random Variables
Adding and Subtracting, Polynomials
a(b + c) = ab + ac or a(b - c) = ab - ac Order of Operations
THE DISTRIBUTIVE PROPERTY: Factoring the Expression
… and now for something completely different…
Exercises Show that (P  Q)  (P)  (Q)
Distributed Submodular Maximization in Massive Datasets
اختر أي شخصية واجعلها تطير!
Set-Builder Notation.
Distributive Property
תורשה תאחיזה ל-X, תכונות כמותיות נושאי השיעור תורשה בתאחיזה ל-x
Coverage Approximation Algorithms
Applied Discrete Mathematics Week 2: Proofs
Factoring distributions V X1 X2 X3 X4 X5 X6 X7 Given random variables X1,…,Xn Partition variables V into sets A and VnA as independent as possible.
FORECASTING 16-Jan-19 Dr.B.Sasidhar.
ISEN 315 Spring 2011 Dr. Gary Gaukler
… and now for something completely different…
Adding with 9’s.
Adding with 10’s.
2-5 (Part I) Applying the Distributive Property
DISTRIBUTIVE PROPERTY II
Rewriting Equations Equivalent Equations.
Adding ____ + 10.
Distributive Property
Presentation transcript:

Example: Feature selection Given random variables Y, X1, … Xn Want to predict Y from subset XA = (Xi1,…,Xik) Want k most informative features: A* = argmax IG(XA; Y) s.t. |A| · k where IG(XA; Y) = H(Y) - H(Y | XA) Problem inherently combinatorial! Y “Sick” X1 “Fever” X2 “Rash” X3 “Male” Naïve Bayes Model Uncertainty before knowing XA Uncertainty after knowing XA

Key property: Diminishing returns Selection A = {} Selection B = {X2,X3} Y “Sick” Y “Sick” X2 “Rash” X3 “Male” X1 “Fever” Adding X1 will help a lot! Adding X1 doesn’t help much New feature X1 B + s Large improvement Submodularity: A + s Small improvement For Aµ B, z(A [ {s}) – z(A) ¸ z(B [ {s}) – z(B)

Submodular set functions Set function z on V is called submodular if For all A,B µ V: z(A)+z(B) ¸ z(A[B)+z(AÅB) Equivalent diminishing returns characterization: + ¸ + A A [ B B AÅB B + S Large improvement Submodularity: A + S Small improvement For AµB, sB, z(A [ {s}) – z(A) ¸ z(B [ {s}) – z(B)

Example: Set cover Want to cover floorplan with discs Place sensors in building Possible locations V For A µ V: z(A) = “area covered by sensors placed at A” Node predicts values of positions with some radius Formally: W finite set, collection of n subsets Si µ W For A µ V={1,…,n} define z(A) = |i2 A Si|

Set cover is submodular A={S1,S2} S1 S2 S’ z(A[{S’})-z(A) ¸ z(B[{S’})-z(B) S1 S2 S3 S’ S4 B = {S1,S2,S3,S4}