Volume 19, Issue 4, Pages (April 2017)

Slides:



Advertisements
Similar presentations
Volume 17, Issue 7, Pages (April 2007)
Advertisements

Volume 19, Issue 4, Pages (April 2017)
Volume 86, Issue 2, Pages (April 2015)
The Anaphase-Promoting Complex Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans  Peter Juo, Joshua M. Kaplan 
Volume 35, Issue 1, Pages (July 2002)
Anneliese M. Schaefer, Gayla D. Hadwiger, Michael L. Nonet  Neuron 
An RNAi Screen Identifies Genes that Regulate GABA Synapses
Volume 55, Issue 4, Pages (August 2007)
Volume 79, Issue 2, Pages (July 2013)
Kinesin-13 and Tubulin Posttranslational Modifications Regulate Microtubule Growth in Axon Regeneration  Anindya Ghosh-Roy, Alexandr Goncharov, Yishi.
Regulation of Presynaptic Terminal Organization by C
Paola Dal Santo, Mary A Logan, Andrew D Chisholm, Erik M Jorgensen 
Volume 25, Issue 19, Pages (October 2015)
Volume 57, Issue 3, Pages (February 2008)
Volume 84, Issue 4, Pages (November 2014)
The DLK-1 Kinase Promotes mRNA Stability and Local Translation in C
Volume 54, Issue 6, Pages (June 2014)
Highwire Restrains Synaptic Growth by Attenuating a MAP Kinase Signal
Melissa Hernandez-Fleming, Ethan W. Rohrbach, Greg J. Bashaw 
Volume 43, Issue 2, Pages e7 (October 2017)
The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans  Jennifer A Zallen, B.Alexander Yi,
Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein  Keming Zhou, Salvatore J. Cherra, Alexandr.
Volume 22, Issue 6, Pages (February 2018)
LIN-23-Mediated Degradation of β-Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans  Lars Dreier, Michelle.
Volume 70, Issue 4, Pages (May 2011)
Volume 76, Issue 3, Pages (November 2012)
Chaogu Zheng, Felix Qiaochu Jin, Martin Chalfie  Cell Reports 
Elliot A. Perens, Shai Shaham  Developmental Cell 
HBL-1 Patterns Synaptic Remodeling in C. elegans
Volume 11, Issue 8, Pages (May 2015)
A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation  Beril Kiragasi, Joyce Wondolowski, Yan.
Serotonin Inhibition of Synaptic Transmission
Volume 20, Issue 12, Pages (September 2017)
Volume 46, Issue 4, Pages (May 2005)
Volume 31, Issue 1, Pages (July 2001)
PAR-1 Kinase Phosphorylates Dlg and Regulates Its Postsynaptic Targeting at the Drosophila Neuromuscular Junction  Yali Zhang, Huifu Guo, Helen Kwan,
Volume 26, Issue 5, Pages (March 2016)
Massimo A. Hilliard, Cornelia I. Bargmann  Developmental Cell 
Volume 55, Issue 4, Pages (August 2007)
An RNAi Screen Identifies Genes that Regulate GABA Synapses
Volume 16, Issue 9, Pages (May 2006)
Volume 71, Issue 1, Pages (July 2011)
Volume 10, Issue 3, Pages (March 2006)
Volume 39, Issue 2, Pages (October 2016)
Volume 55, Issue 6, Pages (September 2007)
Volume 80, Issue 6, Pages (December 2013)
Volume 143, Issue 3, Pages (October 2010)
Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport  David M.
Volume 24, Issue 7, Pages (August 2018)
Volume 82, Issue 3, Pages (May 2014)
Volume 24, Issue 3, Pages e4 (July 2018)
Volume 11, Issue 11, Pages (June 2015)
RIC-8 (Synembryn) Neuron
MAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin- Mediated Axon Repulsion  Xun Huang, Hwai-Jong Cheng, Marc Tessier-Lavigne,
Volume 149, Issue 1, Pages (March 2012)
Xintong Dong, Oliver W. Liu, Audrey S. Howell, Kang Shen  Cell 
Volume 75, Issue 5, Pages (September 2012)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Volume 16, Issue 9, Pages (August 2016)
Volume 109, Issue 5, Pages (May 2002)
Hulusi Cinar, Sunduz Keles, Yishi Jin  Current Biology 
Volume 143, Issue 3, Pages (October 2010)
Volume 22, Issue 19, Pages (October 2012)
Volume 120, Issue 3, Pages (February 2005)
Volume 86, Issue 6, Pages (June 2015)
Rab3 Dynamically Controls Protein Composition at Active Zones
Volume 59, Issue 6, Pages (September 2008)
Brent Neumann, Massimo A. Hilliard  Cell Reports 
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Volume 19, Issue 4, Pages 822-835 (April 2017) The HECT Family Ubiquitin Ligase EEL-1 Regulates Neuronal Function and Development  Karla J. Opperman, Ben Mulcahy, Andrew C. Giles, Monica G. Risley, Rayna L. Birnbaum, Erik D. Tulgren, Ken Dawson-Scully, Mei Zhen, Brock Grill  Cell Reports  Volume 19, Issue 4, Pages 822-835 (April 2017) DOI: 10.1016/j.celrep.2017.04.003 Copyright © 2017 The Author(s) Terms and Conditions

Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 1 eel-1 RNAi and eel-1 Mutations Cause Hypersensitivity to Aldicarb (A) Schematic of the human HUWE1, Drosophila Huwe1, and C. elegans EEL-1 protein sequences. Conserved mutations associated with intellectual disability (R2981H and R4187C) are highlighted. Deletions generated by ok1575 and zu462 are shown below. Conserved protein domains are annotated as follows: DUF, domain of unknown function, annotated in the NCBI conserved domain database; CD, conserved domain of unknown function, annotated here; UBA, ubiquitin-associated domain; WWE, WWE domain; CAD, conserved acidic domain; HECT, homologous to E6AP c-terminus domain. (B) Aldicarb time course for eel-1 RNAi using eri-1; lin-15B animals. (C) Aldicarb paralysis at the 90-min time point for eel-1 RNAi using eri-1; lin-15B. (D) Aldicarb time course for eel-1 RNAi using uIs57; lin-15B animals. (E) Aldicarb paralysis at the 60-min time point for eel-1 RNAi using uIs57; lin-15B animals. (F) Aldicarb time course for eel-1 mutants, zu462, and ok1575. (G) Aldicarb paralysis at the 60-min time point for eel-1 mutants. goa-1 and ric-3 mutants were included as positive controls for the Hic and Ric phenotypes. Significance was determined using an unpaired Student’s t test, and error bars represent SEM. ∗∗p < 0.01, ∗∗∗p < 0.001. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 2 EEL-1 Functions in GABAergic Motor Neurons to Regulate Aldicarb Hypersensitivity (A) Aldicarb time course showing that transgenic expression of EEL-1 rescues the aldicarb hypersensitivity of eel-1 mutants. (B) Aldicarb paralysis at the 150-min time point for EEL-1 transgenic rescues. (C) Aldicarb time course showing that transgenic expression of EEL-1 in GABAergic motor neurons (PGABA::EEL-1) rescues the aldicarb hypersensitivity of eel-1 mutants. (D) Aldicarb paralysis at the 150-min time point for EEL-1 rescue in GABAergic motor neurons. (E) Aldicarb time course showing that transgenic overexpression of EEL-1 in wild-type animals using a pan-neuronal promoter (Pneuro::EEL-1) or a promoter specific for GABAergic motor neurons (PGABA::EEL-1) results in resistance to aldicarb. (F) Aldicarb paralysis at the 180-min time point for transgenic overexpression of EEL-1. Significance was determined using an unpaired Student’s t test, and error bars represent SEM. ∗∗∗p < 0.001. ns, not significant. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 3 EEL-1 Is Required for GABAergic Transmission at the NMJ (A) GABAergic mIPSC frequency is reduced in eel-1 (zu462) mutants. (B) Representative GABAergic traces for the indicated genotypes. (C) The integrated transgenic line bggIs16 (Peel-1::EEL-1) rescues GABAergic mIPSC frequency defects in eel-1 mutants. (D) Representative GABAergic traces for the indicated genotypes. (E) Cholinergic mEPSC frequency and amplitude are unchanged in eel-1 mutants. (F) Representative cholinergic traces for the indicated genotypes. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 4 EEL-1 Is Expressed in the Nervous System and Present at GABAergic Presynaptic Terminals Transgenic animals expressing Peel-1::GFP were analyzed using epifluorescent microscopy. (A) Shown are representative images of neurons in the head, the nerve ring, and the ventral nerve cord. (B) Cholinergic motor neurons (arrows) coexpressing Peel-1::GFP and Punc-129::mCherry (cholinergic marker). (C) GABAergic motor neurons (arrows) coexpressing Peel-1::GFP and Punc-25::mCherry (GABAergic marker). (D) ALM mechanosensory neuron (arrow) coexpressing Peel-1::GFP and Pmec-7::mCherry (ALM marker). (E) PLM mechanosensory neuron (arrow) coexpressing Peel-1::GFP and Pmec-7::mCherry (PLM marker). (F) GABAergic presynaptic terminals in the dorsal cord coexpressing SNB-1::GFP (juIs1, green) and mCherry::EEL-1 (magenta). Left: a merged confocal image of a multi-slice z projection. Right: a higher magnification of a single confocal slice. Scale bars, 10 μm. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 5 Locomotion and Electroshock Response Are Impaired in eel-1 Mutants (A) Quantitation of reverse locomotion following harsh head touch for the indicated genotypes. (B) MWT analysis indicates forward locomotion is impaired in eel-1 mutants. (C) Transgenic expression of EEL-1, bggls16 (Peel-1::EEL-1), rescues forward locomotion defects in eel-1 mutants. (D) Quantitation of time to recovery following electroshock-induced paralysis. Recovery from electroshock is impaired in eel-1 mutants and rescued by the transgene bggIs16. (E) Treatment of eel-1 mutants with RTG suppresses defects in recovery from electroshock. Significance was determined using unpaired Student’s t test. Error bars represent SEM. ∗∗p < 0.01, ∗∗∗p < 0.001. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 6 Motor Neuron Synapse Formation Is Largely Normal in eel-1 Mutants but Enhanced Synapse Formation Defects Are Present in eel-1; fsn-1 Double Mutants (A) Schematic of a cholinergic motor neuron (purple) innervating dorsal muscles. Presynaptic terminals are shown in green. The blue box highlights the region of the dorsal cord that was visualized using the transgene nuIs152 (Punc-129::SNB-1::GFP) for the indicated genotypes. Highlighted are regions lacking SNB-1 puncta (arrows) and abnormal SNB-1 aggregation (arrowheads). (B) Quantitation of SNB-1 puncta in cholinergic motor neurons for the indicated genotypes. (C) Schematic of a GABAergic motor neuron (purple) innervating dorsal muscles. Presynaptic terminals are shown in green. The blue box highlights the region of the dorsal cord visualized using the transgene juIs1 (Punc-25::SNB-1::GFP) for the indicated genotypes. (D) Quantitation of SNB-1 puncta in GABAergic motor neurons for the indicated genotypes. Significance was determined using unpaired Student’s t test. Error bars represent SEM. ∗∗∗p < 0.001. Scale bar, 10 μm. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions

Figure 7 Conserved, Disorder-Associated Mutations Impair EEL-1 Wild-type EEL-1 or EEL-1 carrying point mutations associated with intellectual disability (EEL-1 R2991H or R3990C) were tested for transgenic rescue of aldicarb hypersensitivity in eel-1 mutants. (A) Aldicarb time course for the indicated genotypes. (B) Aldicarb paralysis at the 150-min time point for the indicated genotypes. ∗∗∗p < 0.001. Cell Reports 2017 19, 822-835DOI: (10.1016/j.celrep.2017.04.003) Copyright © 2017 The Author(s) Terms and Conditions