Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.

Slides:



Advertisements
Similar presentations
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Advertisements

Volume 29, Issue 6, Pages (June 2013)
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
B. Bai, Y. Li  Osteoarthritis and Cartilage 
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
B. J. Kim, D. -W. Kim, S. H. Kim, J. H. Cho, H. J. Lee, D. Y. Park, S
S. Zhang, W.C. Chu, R.C. Lai, S.K. Lim, J.H.P. Hui, W.S. Toh 
Anti-inflammatory effect of low intensity ultrasound (LIUS) on complete Freund's adjuvant-induced arthritis synovium  J.-I. Chung, S. Barua, B.H. Choi,
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
Granulocyte macrophage – colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture  M.-D. Truong,
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Alleviation of osteoarthritis by calycosin-7-O-β-d-glucopyranoside (CG) isolated from Astragali radix (AR) in rabbit osteoarthritis (OA) model  S.I. Choi,
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Mesenchymal stromal cells for cartilage repair in osteoarthritis
Clodronate exerts an anabolic effect on articular chondrocytes mediated through the purinergic receptor pathway  R.G. Rosa, K. Collavino, A. Lakhani,
Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect.
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein  Y. Uehara, J. Hirose, S.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects.
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Stereological analysis of subchondral angiogenesis induced by chitosan and coagulation factors in microdrilled articular cartilage defects  C. Mathieu,
Characterization of cartilage repair in a focal mouse defect model
Anti-inflammatory effect of low intensity ultrasound (LIUS) on complete Freund's adjuvant-induced arthritis synovium  J.-I. Chung, S. Barua, B.H. Choi,
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Osteoarthritis and Cartilage
The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium  A. Eitner, J. Pester, S. Nietzsche, G.O.
Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that.
Effect of self assembled peptide-mesenchymal stem cell complex on delaying the progression of osteoarthritis  S. Kim, S. Lee, Y. Jung, J. Kim, S. Kim 
Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model  S. Elmorsy, T. Funakoshi, F. Sasazawa,
T. Kimura, T. Ozaki, K. Fujita, A. Yamashita, M. Morioka, K. Ozono, N
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
G. Venne, S. Pang, Y. Tse, R. Ellis  Osteoarthritis and Cartilage 
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair  R.E. Miller, A.J. Grodzinsky,
The chondrogenic repair response of undifferentiated mesenchymal cells in rat full- thickness articular cartilage defects  Y. Anraku, M.D., H. Mizuta,
A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation  H.S. McCarthy,
Pretreatment of periosteum with TGF-β1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits 
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
Utility of T2 mapping and dGEMRIC for evaluation of cartilage repair after allograft chondrocyte implantation in a rabbit model  J. Endo, A. Watanabe,
Expression of the PTH/PTHrP receptor in chondrogenic cells during the repair of full- thickness defects of articular cartilage  H. Mizuta, M.D., Ph.D.,
An experimental study on costal osteochondral graft
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants  S.R. Frenkel, Ph.D., G. Bradica,
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis  M. Schinhan, M. Gruber, R. Dorotka, M.
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
Presentation transcript:

Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite  Y.B. Park, C.W. Ha, J.A. Kim, W.J. Han, J.H. Rhim, H.J. Lee, K.J. Kim, Y.G. Park, J.Y. Chung  Osteoarthritis and Cartilage  Volume 25, Issue 4, Pages 570-580 (April 2017) DOI: 10.1016/j.joca.2016.10.012 Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Gross appearance and assessment results of articular cartilage defects in a rabbit model at 8 and 16 weeks post-transplantation. (A): Experimental knees with hUCB-MSCs + HA, control knees with HA only, defect only, and normal knee without defect at 8 weeks. (B): Experimental knees with hUCB-MSCs + HA, control knees with HA only, defect only, and normal knee without defect at 16 weeks. (C): ICRS macroscopic cartilage repair assessment for hUCB-MSCs + HA, HA only, and defect only (10 knees/group). Error bars represent 95% confidence interval. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Microscopic findings of the repair tissue at articular cartilage defect sites in a rabbit (10 knees/group). (A): H & E staining at 8 weeks; ×12.5. Scale bars = 1 μm. (B): H & E staining at 16 weeks; ×12.5. Scale bars = 1 μm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; ×40. Scale bars = 200 μm. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Microscopic findings of the repair tissue at articular cartilage defect sites in a rabbit (10 knees/group). (A): Masson's trichrome stain at 8 weeks; ×12.5. Scale bars = 1 μm. (B): Masson's trichrome stain at 16 weeks; ×12.5. Scale bars = 1 μm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; ×40. Scale bars = 200 μm. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Microscopic findings of repair tissue at the articular cartilage defect sites in a rabbit (10 knees/group). (A): Type II collagen immunostaining at 8 weeks; ×12.5. Scale bars = 1 μm. (B): Type II collagen immunostaining at 16 weeks; ×12.5. Scale bars = 1 μm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; ×40. Scale bars = 200 μm. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Microscopic findings of repair tissue at the articular cartilage defect sites in a rabbit (10 knees/group). (A): Safranin-O staining at 8 weeks; ×12.5. Scale bars = 1 μm. (B): Safranin-O staining at 16 weeks; ×12.5. Scale bars = 1 μm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; ×40. Scale bars = 200 μm. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Microscopic findings of repair tissue at the articular cartilage defect sites in a rabbit (10 knees/group). (A): Sirius Red staining at 8 weeks; ×40. Scale bars = 200 μm. (B): Sirius Red staining at 16 weeks; ×40. Scale bars = 200 μm. (Ai, Bi): Higher magnification views of the areas boxed in (A, B) respectively; ×100. Scale bars = 100 μm. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Semiquantitative analysis of repair tissue at the articular cartilage defect sites in rabbit knee at 8 and 16 weeks (10 knees/group). Sections were histologically evaluated based on a modified O'Driscoll score). Error bars represent 95% confidence interval. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 Cell tracking images using anti-human nuclear antibody staining at 2, 4, 8, and 16 weeks post-transplantation (10 knees/week). (A): 2 weeks. (B): 4 weeks. (C): 8 weeks. (D): 16 weeks; X Fit. Scale bars = 6 mm. (Ai, Bi, Ci, Di): Higher magnification views of the areas boxed in (A–D) respectively; ×4. Scale bars = 500 μm. (E): Quantification of human nuclei staining in cartilage sections. (F): As a negative control, human kidney tissues were incubated in mouse IgG instead of the mouse anti-human nuclei monoclonal antibody. (F): Positive controls were incubated with anti-human nuclei monoclonal antibody. Error bars represent 95% confidence interval. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 Cell tracking images using anti-human nuclear antibody staining at 2, 4, 8, and 16 weeks post-transplantation (10 knees/week). (A): 2 weeks. (B): 4 weeks. (C): 8 weeks. (D): 16 weeks; X Fit. Scale bars = 6 mm. (Ai, Bi, Ci, Di): Higher magnification views of the areas boxed in (A–D) respectively; ×4. Scale bars = 500 μm. (E): Quantification of human nuclei staining in cartilage sections. (F): As a negative control, human kidney tissues were incubated in mouse IgG instead of the mouse anti-human nuclei monoclonal antibody. (F): Positive controls were incubated with anti-human nuclei monoclonal antibody. Error bars represent 95% confidence interval. Osteoarthritis and Cartilage 2017 25, 570-580DOI: (10.1016/j.joca.2016.10.012) Copyright © 2016 Osteoarthritis Research Society International Terms and Conditions