White-Box Testing Techniques II

Slides:



Advertisements
Similar presentations
DATAFLOW TESTING DONE BY A.PRIYA, 08CSEE17, II- M.s.c [C.S].
Advertisements

Data Flow Coverage. Reading assignment L. A. Clarke, A. Podgurski, D. J. Richardson and Steven J. Zeil, "A Formal Evaluation of Data Flow Path Selection.
White-Box Testing Techniques IV
Graph Coverage (2).
Graph Coverage Criteria Structural Coverage Criteria : Defined on a graph just in terms of nodes and edges Data Flow Coverage Criteria : Requires a graph.
The Application of Graph Criteria: Source Code  It is usually defined with the control flow graph (CFG)  Node coverage is used to execute every statement.
Software Testing Sudipto Ghosh CS 406 Fall 99 November 16, 1999.
Software Testing and Quality Assurance
SOFTWARE TESTING WHITE BOX TESTING 1. GLASS BOX/WHITE BOX TESTING 2.
Topics in Software Dynamic White-box Testing: Data-flow Testing
Verification and Validation (Part 2) John Morris Computer Science/ Electrical and Computer Engineering 28-Aug-151 A hard day’s work ensuring that some.
Topics in Software Dynamic White-box Testing Part 2: Data-flow Testing
Introduction to Software Testing Chapter 2.3 Graph Coverage for Source Code Paul Ammann & Jeff Offutt
Paul Ammann & Jeff Offutt
Software testing techniques Testing criteria based on data flow
White-Box Testing Techniques II Originals prepared by Stephen M. Thebaut, Ph.D. University of Florida Dataflow Testing.
Agenda Introduction Overview of White-box testing Basis path testing
1 Software Testing. 2 Path Testing 3 Structural Testing Also known as glass box, structural, clear box and white box testing. A software testing technique.
Test Coverage CS-300 Fall 2005 Supreeth Venkataraman.
Introduction to Software Testing Chapter 2.3 Graph Coverage for Source Code Paul Ammann & Jeff Offutt
Paul Ammann & Jeff Offutt
1 Graph Coverage (3). Reading Assignment P. Ammann and J. Offutt “Introduction to Software Testing” ◦ Section 2.2 ◦ Section
Control Flow Graphs : The if Statement 1 if (x < y) { y = 0; x = x + 1; } else { x = y; } x >= yx < y x = y y = 0 x = x + 1 if (x < y) { y = 0;
1 Test Coverage Coverage can be based on: –source code –object code –model –control flow graph –(extended) finite state machines –data flow graph –requirements.
White-Box Testing Techniques I Prepared by Stephen M. Thebaut, Ph.D. University of Florida Software Testing and Verification Lecture 7.
Software Testing and Maintenance Lecture 3 Graph Coverage for Source Code Paul Ammann & Jeff Offutt Instructor: Hossein Momeni Mazandaran.
SOFTWARE TESTING LECTURE 9. OBSERVATIONS ABOUT TESTING “ Testing is the process of executing a program with the intention of finding errors. ” – Myers.
White-Box Testing Techniques. Definition of White-Box Testing Testing based on analysis of internal logic (design, code, etc.). (But expected results.
Paul Ammann & Jeff Offutt
Software TestIng White box testing.
CS223: Software Engineering
White-Box Testing Techniques IV
Paul Ammann & Jeff Offutt
White-Box Testing Pfleeger, S. Software Engineering Theory and Practice 2nd Edition. Prentice Hall, Ghezzi, C. et al., Fundamentals of Software Engineering.
Control Flow Testing Handouts
Handouts Software Testing and Quality Assurance Theory and Practice Chapter 4 Control Flow Testing
White-Box Testing Techniques IV
Software Testing and Maintenance 1
Paul Ammann & Jeff Offutt
Paul Ammann & Jeff Offutt
Outline of the Chapter Basic Idea Outline of Control Flow Testing
Paul Ammann & Jeff Offutt
Path testing Path testing is a “design structural testing” in that it is based on detailed design & the source code of the program to be tested. The.
Structural testing, Path Testing
White-Box Testing Techniques
Graph Coverage for Design Elements CS 4501 / 6501 Software Testing
Prepared by Stephen M. Thebaut, Ph.D. University of Florida
White-Box Testing.
White-Box Testing Techniques II
Paul Ammann & Jeff Offutt
Dataflow Testing G. Rothermel.
White-Box Testing Techniques III
White-Box Testing.
White-Box Testing Techniques III
Paul Ammann & Jeff Offutt
Graph Coverage for Design Elements CS 4501 / 6501 Software Testing
Sudipto Ghosh CS 406 Fall 99 November 16, 1999
Graph Coverage for Source Code
Paul Ammann & Jeff Offutt
White-Box Testing Techniques I
Graph Coverage Criteria
Axiomatic Verification I
White-Box Testing Techniques II
Graph Coverage Criteria
Black-Box Testing Techniques II
Paul Ammann & Jeff Offutt
Paul Ammann & Jeff Offutt
Paul Ammann & Jeff Offutt
Software Testing and QA Theory and Practice (Chapter 5: Data Flow Testing) © Naik & Tripathy 1 Software Testing and Quality Assurance Theory and Practice.
Unit III – Chapter 3 Path Testing.
Presentation transcript:

White-Box Testing Techniques II Software Testing and Verification Lecture 8 Prepared by Stephen M. Thebaut, Ph.D. University of Florida

White-Box Testing Topics Logic coverage (lecture I) Dataflow coverage (lecture II) Path conditions and symbolic execution (lecture III) Other white-box testing strategies (e.g., “fault-based testing”) (lecture IV)

Dataflow Coverage Based on the idea that program paths along which variables are defined and then used should be covered. Families of path selection criteria have been defined based on somewhat different models/definitions. The different criteria reflect different degrees of coverage. The model/definitions we consider are representative. CASE tool support is very desirable.

Dataflow Coverage Based on the idea that program paths along which variables are defined and then used should be covered. Families of path selection criteria have been defined based on somewhat different models/definitions. The different criteria reflect different degrees of coverage. The model/definitions we consider are representative. CASE tool support is very desirable.

Dataflow Coverage Based on the idea that program paths along which variables are defined and then used should be covered. Families of path selection criteria have been defined based on somewhat different models/definitions. The different criteria reflect different degrees of coverage. The model/definitions we consider are representative. CASE tool support is very desirable.

Dataflow Coverage Based on the idea that program paths along which variables are defined and then used should be covered. Families of path selection criteria have been defined based on somewhat different models/definitions. The different criteria reflect different degrees of coverage. The model/definitions we consider are representative. CASE tool support is very desirable.

Variable Definitions and Uses A program variable is DEFINED when it appears: on the left hand side of an assignment statement (e.g., Y := 17) in an input statement (e.g., input(Y)) as an OUT parameter in a subroutine call (e.g., DOIT(X:IN,Y:OUT))

Variable Definitions and Uses A program variable is DEFINED when it appears: on the left hand side of an assignment statement (e.g., Y := 17) in an input statement (e.g., input(Y)) as an OUT parameter in a subroutine call (e.g., DOIT(X:IN,Y:OUT))

Variable Definitions and Uses A program variable is DEFINED when it appears: on the left hand side of an assignment statement (e.g., Y := 17) in an input statement (e.g., input(Y)) as an OUT parameter in a subroutine call (e.g., DOIT(X:IN,Y:OUT))

Variable Definitions and Uses A program variable is DEFINED when it appears: on the left hand side of an assignment statement (e.g., Y := 17) in an input statement (e.g., input(Y)) as an OUT parameter in a subroutine call (e.g., DOIT(X:IN,Y:OUT))

Variable Definitions and Uses (cont’d) A program variable is USED when it appears: on the right hand side of an assignment statement (e.g., Y := X+17) as an IN parameter in a subroutine or function call (e.g., Y := SQRT(X)) in the predicate of a branch statement (e.g., if X>0 then...)

Variable Definitions and Uses (cont’d) A program variable is USED when it appears: on the right hand side of an assignment statement (e.g., Y := X+17) as an IN parameter in a subroutine or function call (e.g., Y := SQRT(X)) in the predicate of a branch statement (e.g., if X>0 then...)

Variable Definitions and Uses (cont’d) A program variable is USED when it appears: on the right hand side of an assignment statement (e.g., Y := X+17) as an IN parameter in a subroutine or function call (e.g., Y := SQRT(X)) in the predicate of a branch statement (e.g., if X>0 then...)

Variable Definitions and Uses (cont’d) A program variable is USED when it appears: on the right hand side of an assignment statement (e.g., Y := X+17) as an IN parameter in a subroutine or function call (e.g., Y := SQRT(X)) in the predicate of a branch statement (e.g., if X>0 then...)

Variable Definitions and Uses (cont’d) Use of a variable in the predicate of a branch statement is called a predicate-use (“p-use”). Any other use is called a computation-use (“c-use”). For example, in the program statement: If (X>0) then print(Y) end_if_then there is a p-use of X and a c-use of Y.

Variable Definitions and Uses (cont’d) Use of a variable in the predicate of a branch statement is called a predicate-use (“p-use”). Any other use is called a computation-use (“c-use”). For example, in the program statement: If (X>0) then print(Y) end_if_then there is a p-use of X and a c-use of Y.

Variable Definitions and Uses (cont’d) A variable can also be used and then re-defined in a single statement when it appears: on both sides of an assignment statement (e.g., Y := Y+X) as an IN/OUT parameter in a subroutine call (e.g., INCREMENT(Y:IN/OUT))

Variable Definitions and Uses (cont’d) A variable can also be used and then re-defined in a single statement when it appears: on both sides of an assignment statement (e.g., Y := Y+X) as an IN/OUT parameter in a subroutine call (e.g., INCREMENT(Y:IN/OUT))

Variable Definitions and Uses (cont’d) A variable can also be used and then re-defined in a single statement when it appears: on both sides of an assignment statement (e.g., Y := Y+X) as an IN/OUT parameter in a subroutine call (e.g., INCREMENT(Y:IN/OUT))

Other Dataflow Terms and (Informal) Definitions A path is definition clear (“def-clear”) with respect to a variable v if there is no re-definition of v along the path. A complete path is a path whose initial node is a/the start node and whose final node is a/the exit node.

Other Dataflow Terms and (Informal) Definitions A path is definition clear (“def-clear”) with respect to a variable v if there is no re-definition of v along the path. A complete path is a path whose initial node is a/the start node and whose final node is a/the exit node.

Other Dataflow Terms and (Informal) Definitions (cont’d) A definition-use pair (“du-pair”) with respect to a variable v is a double (d,u) such that d is a node in the program’s flow graph at which v is defined, u is a node or edge at which v is used, and there is a def-clear path with respect to v from d to u. (Note that the definition of a du-pair does not require the existence of a feasible def-clear path from d to u.)

Example 1 1. input(A,B) if (B>1) then 2. A := A+7 end_if 3. if (A>10) then 4. B := A+B 5. output(A,B) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable A path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Identifying DU-Pairs – Variable B input(A,B) du-pair path(s) (1,4) <1,2,3,4> <1,3,4> (1,5) <1,2,3,5> <1,3,5> (1,<1,2>) <1,2> (1,<1,3>) <1,3> (4,5) <4,5> 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B) (Verification of du-pairs/paths(s) left as an exercise...)

Dataflow Test Coverage Criteria All-Defs: for every program variable v, at least one def-clear path from every definition of v to at least one c-use or one p-use of v must be covered.

Dataflow Test Coverage Criteria (cont’d) Consider a test case executing path: 1. <1,2,3,4,5> Identify all def-clear paths (associated with du-pairs) covered (i.e., subsumed) by this test case for each variable. Are all definitions for each variable associated with at least one of the subsumed def-clear paths?

Dataflow Test Coverage Criteria (cont’d) Consider a test case executing path: 1. <1,2,3,4,5> Identify all def-clear paths (associated with du-pairs) covered (i.e., subsumed) by this test case for each variable. Are all definitions for each variable associated with at least one of the subsumed def-clear paths?

Dataflow Test Coverage Criteria (cont’d) Consider a test case executing path: 1. <1,2,3,4,5> Identify all def-clear paths (associated with du-pairs) covered (i.e., subsumed) by this test case for each variable. Are all definitions for each variable associated with at least one of the subsumed def-clear paths?

Def-Clear Paths Subsumed by <1,2,3,4,5> for Variable A du-pair path(s) (1,2) <1,2>  (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4>  (2,5) <2,3,4,5>  <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Def-Clear Paths Subsumed by <1,2,3,4,5> for Variable B input(A,B) du-pair path(s) (1,4) <1,2,3,4>  <1,3,4> (1,5) <1,2,3,5> <1,3,5> (1,<1,2>) <1,2>  (1,<1,3>) <1,3> (4,5) <4,5>  1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Dataflow Test Coverage Criteria (cont’d) Since <1,2,3,4,5> covers at least one def-clear path from each of the two definitions of A/B to at least one c-use or p-use of A/B, All-Defs coverage is achieved.

Dataflow Test Coverage Criteria (cont’d) All-Uses: for every program variable v, at least one def-clear path from every definition of v to every c-use and every p-use of v must be covered. Consider additional test cases executing paths: 2. <1,3,4,5> 3. <1,2,3,5> Do all three test cases provide All-Uses coverage?

Dataflow Test Coverage Criteria (cont’d) All-Uses: for every program variable v, at least one def-clear path from every definition of v to every c-use and every p-use of v must be covered. Consider additional test cases executing paths: 2. <1,3,4,5> 3. <1,2,3,5> Do all three test cases provide All-Uses coverage?

Dataflow Test Coverage Criteria (cont’d) All-Uses: for every program variable v, at least one def-clear path from every definition of v to every c-use and every p-use of v must be covered. Consider additional test cases executing paths: 2. <1,3,4,5> 3. <1,2,3,5> Do all three test cases provide All-Uses coverage?

Def-Clear Paths Subsumed by <1,3,4,5> for Variable A du-pair path(s) (1,2) <1,2>  (1,4) <1,3,4>  (1,5) <1,3,4,5>  <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4>  (2,5) <2,3,4,5>  <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Def-Clear Paths Subsumed by <1,3,4,5> for Variable B input(A,B) du-pair path(s) (1,4) <1,2,3,4>  <1,3,4>  (1,5) <1,2,3,5> <1,3,5> (1,<1,2>) <1,2>  (1,<1,3>) <1,3>  (4,5) <4,5>  1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Def-Clear Paths Subsumed by <1,2,3,5> for Variable A du-pair path(s) (1,2) <1,2>   (1,4) <1,3,4>  (1,5) <1,3,4,5>  <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4>  (2,5) <2,3,4,5>  <2,3,5>  (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Def-Clear Paths Subsumed by <1,2,3,5> for Variable B input(A,B) du-pair path(s) (1,4) <1,2,3,4>  <1,3,4>  (1,5) <1,2,3,5>  <1,3,5> (1,<1,2>) <1,2>  (1,<1,3>) <1,3>  (4,5) <4,5>  1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

Dataflow Test Coverage Criteria (cont’d) Since none of the three test cases covers the du-pair (1,<3,5>) for variable A, All-Uses Coverage is not achieved. Exercise: Did the three test cases considered provide Branch coverage? Basis Path coverage? Path coverage?

Dataflow Test Coverage Criteria (cont’d) Since none of the three test cases covers the du-pair (1,<3,5>) for variable A, All-Uses Coverage is not achieved. Exercise: Did the three test cases considered provide Branch coverage? Basis Paths coverage? Path coverage?

What would be even stronger than All-Uses? We have considered the All-Defs and the All-Uses criteria so far. How could the definition of All-Uses be modified to make it even stronger? Recall: All-Uses: for every program variable v, at least one def-clear path from every definition of v to every c-use and every p-use of v must be covered.

What would be even stronger than All-Uses? We have considered the All-Defs and the All-Uses criteria so far. How could the definition of All-Uses be modified to make it even stronger? Recall: All-Uses: for every program variable v, at least one def-clear path from every definition of v to every c-use and every p-use of v must be covered.

Example 2 1. input(X,Y) 2. while (Y>0) do 3. if (X>0) then 4. Y := Y-X else 5. input(X) end_if_then_else 6. end_while 7. output(X,Y) 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Note edges <6,7> and <6,3>. Example 2 1. input(X,Y) 2. while (Y>0) do 3. if (X>0) then 4. Y := Y-X else 5. input(X) end_if_then_else 6. end_while 7. output(X,Y) 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) Note edges <6,7> and <6,3>.

Logic Coverage Control Flow Graph input(a) while a do if b then s1 else s2 end_if_then_else end_while output(a)

Dataflow Coverage Control Flow Graph input(a) while a do if b then s1 else s2 end_if_then_else end_while output(a)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y) (cont’d)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

Identifying DU-Pairs – Variable X path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

More Dataflow Terms and Definitions A path (either partial or complete) is simple if all edges within the path are distinct (i.e., different). A path is loop-free if all nodes within the path are distinct (i.e., different).

More Dataflow Terms and Definitions A path (either partial or complete) is simple if all edges within the path are distinct (i.e., different). A path is loop-free if all nodes within the path are distinct (i.e., different).

Simple and Loop-Free Paths <1,3,4,2> ? <1,2,3,2> <1,2,3,1,2> <1,2,3,2,4>

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> <1,2,3,1,2> <1,2,3,2,4>

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> ? <1,2,3,1,2> <1,2,3,2,4>

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> no <1,2,3,1,2> <1,2,3,2,4>

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> no <1,2,3,1,2> ? <1,2,3,2,4>

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> no <1,2,3,1,2> <1,2,3,2,4>

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> no <1,2,3,1,2> <1,2,3,2,4> ?

Simple and Loop-Free Paths <1,3,4,2> yes <1,2,3,2> no <1,2,3,1,2> <1,2,3,2,4>

Simple and Loop-Free Paths (cont’d) Which is stronger, simple or loop-free? Loop-free => Simple Simple => Loop-free

More Dataflow Terms and Definitions A path <n1,n2,...,nj,nk> is a du-path with respect to a variable v if v is defined at node n1 and either: there is a c-use of v at node nk and <n1,n2,...,nj,nk> is a def-clear simple path, or there is a p-use of v at edge <nj,nk> and <n1,n2,...nj> is a def-clear loop-free path.

More Dataflow Terms and Definitions A path <n1,n2,...,nj,nk> is a du-path with respect to a variable v if v is defined at node n1 and either: there is a c-use of v at node nk and <n1,n2,...,nj,nk> is a def-clear simple path, or there is a p-use of v at edge <nj,nk> and <n1,n2,...nj> is a def-clear loop-free path. NOTE!

Identifying du-paths X: (5,7) <5,6,7> † ? <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † ? <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> ? <5,6,3,4,6,(3,4,6)*,7> X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> ? X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> ? <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> ? X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> ? <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † ? <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † ? † infeasible

Identifying du-paths X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> du-pair path(s) du-path? X: (5,7) <5,6,7> † yes <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> no X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

Another Dataflow Test Coverage Criterion All-DU-Paths: for every program variable v, every du-path from every definition of v to every c-use and every p-use of v must be covered.

Exercise Identify all c-uses and p-uses for variable Y in Example 2. For each c-use or p-use, identify (using the “ * ” notation) all def-clear paths. Identify whether or not each def-clear path is feasible, and whether or not it is a du-path.

Exercise Identify all c-uses and p-uses for variable Y in Example 2. For each c-use or p-use, identify (using the “ * ” notation) all def-clear paths. Identify whether or not each def-clear path is feasible, and whether or not it is a du-path.

Exercise Identify all c-uses and p-uses for variable Y in Example 2. For each c-use or p-use, identify (using the “ * ” notation) all def-clear paths. Identify whether or not each def-clear path is feasible, and whether or not it is a du-path.

Summary of White-Box Coverage Relationships Path Compound Condition All du-paths Branch / Condition Basis Paths All-Uses Loop Condition Branch All-Defs * Statement * - nominal cases

White-Box Testing Techniques II Software Testing and Verification Lecture 8 Prepared by Stephen M. Thebaut, Ph.D. University of Florida