כריית מידע -- מבוא ד"ר אבי רוזנפלד.

Slides:



Advertisements
Similar presentations
Web Mining.
Advertisements

Data warehouse example
© Prentice Hall1 DATA MINING TECHNIQUES Introductory and Advanced Topics Eamonn Keogh (some slides adapted from) Margaret Dunham Dr. M.H.Dunham, Data Mining,
Data Mining By Archana Ketkar.
Introduction to WEKA Aaron 2/13/2009. Contents Introduction to weka Download and install weka Basic use of weka Weka API Survey.
Data Mining – Intro.
CS157A Spring 05 Data Mining Professor Sin-Min Lee.
Business Intelligence: Essential of Business
Geology update on December IPM
Presented To: Madam Nadia Gul Presented By: Bi Bi Mariam.
Oracle Data Mining Ying Zhang. Agenda Data Mining Data Mining Algorithms Oracle DM Demo.
CIS 674 Introduction to Data Mining
DASHBOARDS Dashboard provides the managers with exactly the information they need in the correct format at the correct time. BI systems are the foundation.
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Business Intelligence
CIT 858: Data Mining and Data Warehousing Course Instructor: Bajuna Salehe Web:
TURKISH STATISTICAL INSTITUTE INFORMATION TECHNOLOGIES DEPARTMENT (Muscat, Oman) DATA MINING.
Data Mining: Concepts & Techniques. Motivation: Necessity is the Mother of Invention Data explosion problem –Automated data collection tools and mature.
1 © Goharian & Grossman 2003 Introduction to Data Mining (CS 422) Fall 2010.
OLAM and Data Mining: Concepts and Techniques. Introduction Data explosion problem: –Automated data collection tools and mature database technology lead.
Shilpa Seth.  What is Data Mining What is Data Mining  Applications of Data Mining Applications of Data Mining  KDD Process KDD Process  Architecture.
Intelligent Systems Lecture 23 Introduction to Intelligent Data Analysis (IDA). Example of system for Data Analyzing based on neural networks.
Data Mining Techniques As Tools for Analysis of Customer Behavior
Data Mining: Introduction. Why Data Mining? l The Explosive Growth of Data: from terabytes to petabytes –Data collection and data availability  Automated.
Chapter 1 Introduction to Data Mining
Data Mining – A First View Roiger & Geatz. Definition Data mining is the process of employing one or more computer learning techniques to automatically.
Data Mining Chapter 1 Introduction -- Basic Data Mining Tasks -- Related Concepts -- Data Mining Techniques.
Chapter 11 Business Intelligence Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall 11-1.
Data Mining – Intro. Course Overview Spatial Databases Temporal and Spatio-Temporal Databases Multimedia Databases Data Mining.
1 Improving quality of graduate students by data mining Asst. Prof. Kitsana Waiyamai, Ph.D. Dept. of Computer Engineering Faculty of Engineering, Kasetsart.
CS157B Fall 04 Introduction to Data Mining Chapter 22.3 Professor Lee Yu, Jianji (Joseph)
Advanced Database Course (ESED5204) Eng. Hanan Alyazji University of Palestine Software Engineering Department.
Chapter 5: Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization DECISION SUPPORT SYSTEMS AND BUSINESS.
27-18 września Data Mining dr Iwona Schab. 2 Semester timetable ORGANIZATIONAL ISSUES, INDTRODUCTION TO DATA MINING 1 Sources of data in business,
1 Introduction to Data Mining C hapter 1. 2 Chapter 1 Outline Chapter 1 Outline – Background –Information is Power –Knowledge is Power –Data Mining.
MIS2502: Data Analytics Advanced Analytics - Introduction.
February 13, 2016 Data Mining: Concepts and Techniques 1 1 Data Mining: Concepts and Techniques These slides have been adapted from Han, J., Kamber, M.,
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 28 Data Mining Concepts.
Business Intelligence Overview. What is Business Intelligence? Business Intelligence is the processes, technologies, and tools that help us change data.
Business Intelligence dan Dashboard Ensys – minggu ke 6.
Introduction.  Instructor: Cengiz Örencik   Course materials:  myweb.sabanciuniv.edu/cengizo/courses.
Lecture-2 Bscshelp.com.  Why Data Mining and What Kinds of Data Can Be Mined?  Potential Applications 2.
Chapter 3 Building Business Intelligence Chapter 3 DATABASES AND DATA WAREHOUSES Building Business Intelligence 6/22/2016 1Management Information Systems.
July 7, 2016 Data Mining: Concepts and Techniques 1 1.
1 1 Data Mining: Concepts and Techniques — Chapter 1 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser.
Data Mining.
Data Mining: Concepts and Techniques (3rd ed.) — Chapter 1 —
Data Mining – Intro.
Data Mining: Introduction
MIS2502: Data Analytics Advanced Analytics - Introduction
Machine Learning overview Chapter 18, 21
Machine Learning overview Chapter 18, 21
DATA MINING © Prentice Hall.
MIS 451 Building Business Intelligence Systems
Introduction C.Eng 714 Spring 2010.
Datamining : Refers to extracting or mining knowledge from large amounts of data Applications : Market Analysis Fraud Detection Customer Retention Production.
Waikato Environment for Knowledge Analysis
Data Mining: Concepts and Techniques Course Outline
Data Warehousing and Data Mining
Machine Learning with Weka
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques
Opening Weka Select Weka from Start Menu Select Explorer Fall 2003
Data Mining Concepts and Techniques
Data Mining: Concepts and Techniques
Data Mining.
Welcome! Knowledge Discovery and Data Mining
Machine Learning overview Chapter 18, 21
Promising “Newer” Technologies to Cope with the
Presentation transcript:

כריית מידע -- מבוא ד"ר אבי רוזנפלד

מה לומדים פה... אלגוריתמים של כריית מידע להבין את המשמעות של הפלט (החוקים) של הלמידה איך לייצר את החוקים (WEKA, SQL SERVER) זה לא קורס בבסיסי נתונים (ACCESS) בסיסי נתונים הם חלק, אבל רק חלק מהתהליך

Knowledge Discovery (KDD) Process This is a view from typical database systems and data warehousing communities Data mining plays an essential role in the knowledge discovery process Pattern Evaluation Data Mining Task-relevant Data Selection Data Warehouse Data Cleaning Data Integration Databases

Data Mining in Business Intelligence Increasing potential to support business decisions End User Decision Making Data Presentation Business Analyst Visualization Techniques Data Mining Data Analyst Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses DBA Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems

תהליך של כריית מידע

שלב הראשון – להבין את הסביבה איזה מידע יש במערכת? האם זה מספיק? האם המידע הסתברותי? האם יש LABEL (מידע אובייקטיבי) Fraud in credit card, fraud in Machon tests מה המחיר לאסוף עוד מידע (Certainty level)

הכנת המידע – איך המידע מאוחסן קובץ EXCEL (הפורמט שאני אוהב) ACCESS SQL, ORACLE, SPSS, MATHLAB וכו'

בניית המודל רוב הקורס– האלגוריתמים בשקפים הבאים...

ניצול החוקים יישום החוקים, הסקת מסקנות, הדרכה וכו' גילוי של מאפיינים חדשים ולמידה מחדש וכו'

האלגוריתמים של כריית מידע Classification – קלסיפיקציה – C4.5 Regression - רגרסיה – polynomial, logistic, SVM Clustering – מיקבוץ – k-NN, k-means Co-occurrence – collaborative filtering Information Retrieval – PageRank Probabilistic models – Bayes, Naïve Bayes

שיטות למידה - Supervised Decision Trees – finding cancer

שיטות למידה - Unsupervised Clustering (k=11)

ההבדל בין כריית מידע ושאילתות בשאלתה אתה בערך יודע מה אתה מחפש: SELECT * FROM CUSTOMERS WHERE AGE > 45 בכריית מידע אתה מחפש משהו ואתה לא יודע מראש מה! SELECT ??? FROM CUSTOMERS WHERE ???

דוגמאות מי מכר הכי הרבה פריטים בתוך החברה (שאילתה) איזה פריטים נמכרו הכי הרבה (שאילתה) האם יש תלות מאיזור המכירה והפריטים שנמכרו שם? (כריית מידע) איך ניתן לנבא כמה נמכור באיזור XXX בעוד שנה? (כריית מידע-- רגרסיה) איך ניתן לנבא אם פריט Y יהיה רווחי (כריית מידע רגרסיה / קלסיפיקציה) איך ניתן לנבא איזה זוגות של פריטים שווה למכור ביחד (כריית מידע clustering, association)