Physics and Techniques of Event Generators

Slides:



Advertisements
Similar presentations
IMFP Day 4 April 6, 2006 Rick Field – Florida/CDF/CMSPage 1 XXXIV International Meeting on Fundamental Physics Rick Field University of Florida (for.
Advertisements

University of Toronto March 18, 2008 Rick Field – Florida/CDF/CMSPage 1 Studying the Underlying Event at CDF and the LHC Rick Field University of Florida.
University of California, Berkeley January 13, 2009 Rick Field – Florida/CDF/CMSPage 1 Studying the Underlying Event at CDF and the LHC Rick Field University.
2012 Tel Aviv, October 15, 2012 Rick Field – Florida/CDF/CMSPage 1 Rick Field University of Florida Outline of Talk CMS at the LHC CDF Run 2 
Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDFPage 1 The “Underlying Event” in Run 2 at CDF  Study the “underlying event” as defined by.
C2CR07-Lake Tahoe February 28, 2007 Rick Field – Florida/CDFPage 1 C2CR07 Rick Field University of Florida (for the CDF Collaboration) CDF Run 2 Min-Bias.
Workshop on Early LHC Physics May 6, 2009 Rick Field – Florida/CDF/CMSPage 1 Workshop on Early Physics Opportunities at the LHC Rick Field University of.
LPC CMS Workshop June 8, 2007 Rick Field – Florida/CMSPage 1 LPC Mini-Workshop on Early CMS Physics Rick Field University of Florida (for the.
MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.
Perugia, Italy October 27, 2008 Rick Field – Florida/CDF/CMSPage 1 Studying the Underlying Event at CDF and the LHC Rick Field University of.
St. Andrews, Scotland August 22, 2011 Rick Field – Florida/CDF/CMSPage Rick Field University of Florida Outline  Do we need a.
Fermilab Energy Scaling Workshop April 28, 2009 Rick Field – Florida/CDF/CMSPage 1 1 st Workshop on Energy Scaling in Hadron-Hadron Collisions Rick Field.
CDF Paper Seminar Fermilab - March 11, 2010 Rick Field – Florida/CDF/CMSPage 1 Sorry to be so slow!! Studying the “Underlying Event” at CDF CDF Run 2 “Leading.
2010 Glasgow, November 30, 2010 Rick Field – Florida/CDF/CMSPage Rick Field University of Florida Outline of Talk  Discuss the.
ICHEP 2012 Melbourne, July 5, 2012 Rick Field – Florida/CDF/CMSPage 1 ICHEP 2012 Rick Field University of Florida Outline of Talk CMS at the LHC CDF Run.
TeV4LHC - Fermilab October 20, 2005 Rick Field - Florida/CDFPage 1 TeV4LHC Workshop Rick Field University of Florida CDF Run 2 Talk #1.
ISMD2004 July 27, 2004 Rick Field - Florida/CDFPage 1 International Symposium on Multiparticle Dynamics Rick Field (theorist?) “Jet Formation in QCD”
Energy Dependence of the UE
CDF Collaboration Meeting
YETI’11: The Standard Model at the Energy Frontier
The LHC Physics Environment
The “Underlying Event” CDF-LHC Comparisons
1st Workshop on Energy Scaling in Hadron-Hadron Collisions
“softQCD” and Correlations Rick Field & Nick Van Remortel
Rick Field – Florida/CDF/CMS
Lake Louise Winter Institute
MB&UE Working Group Meeting UE Lessons Learned & What’s Next
University of Chicago Lecture 3: Tuning the Models
51st Cracow School of Theoretical Physics The Soft Side of the LHC
PHZ 6358 Fall 2011 The Modeling of the Underlying Event Rick Field
A Closer Look at the Underlying Event in Run 2 at CDF
The “Underlying Event” in Run 2 (CDF)
MB&UE Working Group Meeting CMS UE Data and the New Tune Z1
Predicting MB & UE at the LHC
Predicting “Min-Bias” and the “Underlying Event” at the LHC
Energy Dependence of the “Underlying Event” Craig Group & David Wilson
Modeling Min-Bias and Pile-Up University of Oregon February 24, 2009
Predicting “Min-Bias” and the “Underlying Event” at the LHC
Early Physics Measurements University of Florida October 2009
Predicting “Min-Bias” and the “Underlying Event” at the LHC
“Min-Bias” and the “Underlying Event” at CDF
Monte-Carlo Generators for CMS
Min-Bias and the Underlying Event in Run 2
Rick Field – Florida/CDF/CMS
The Tevatron Connection
XXXV International Symposium on Multiparticle Dynamics 2005
“Min-Bias” and the “Underlying Event” in Run 2 at CDF and the LHC
Monte Carlos for the LHC
XXXIV International Meeting on Fundamental Physics
The Next Stretch of the Higgs Magnificent Mile
The LHC Physics Environment
The “Underlying Event” in Run 2 at CDF
RHIC & AGS Annual Users’ Meeting
CDF Run 2 Monte-Carlo Tunes
International Symposium on Multiparticle Dynamics
“Min-Bias” & “Underlying Event” at the Tevatron and the LHC
Multiple Parton Interactions and the Underlying Event
The “Underlying Event” CDF-LHC Comparisons
Rick Field – Florida/CDF/CMS
Toward an Understanding of Hadron-Hadron Collisions
“Min-Bias” and the “Underlying Event”
The Underlying Event in Hard Scattering Processes
Review of the QCD Monte-Carlo Tunes
Perspectives on Physics and on CMS at Very High Luminosity
PYTHIA 6.2 “Tunes” for Run II
Rick Field - Florida/CDF
The “Underlying Event” at CDF and CMS
Workshop on Early Physics Opportunities at the LHC
The Underlying Event in Hard Scattering Processes
Rick Field – Florida/CDF/CMS
Presentation transcript:

Physics and Techniques of Event Generators IPPP Durham, April 18-20, 2007 Min-Bias and the Underlying Event at the TEVATRON and the LHC Rick Field University of Florida (for the CDF & CMS Collaborations) UE&MB@CMS 2nd Lecture A more detailed study of the “underlying event” in Run 2 at CDF. and extrapolations to the LHC. Using lepton-pair production to study the “underlying event” in Run 2 at CDF and the LHC. CMS at the LHC CDF Run 2 MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

The “Transverse” Regions as defined by the Leading Jet Charged Particle Df Correlations pT > 0.5 GeV/c |h| < 1 Look at the charged particle density in the “transverse” region! “Transverse” region is very sensitive to the “underlying event”! Look at charged particle correlations in the azimuthal angle Df relative to the leading calorimeter jet (JetClu R = 0.7, |h| < 2). Define |Df| < 60o as “Toward”, 60o < -Df < 120o and 60o < Df < 120o as “Transverse 1” and “Transverse 2”, and |Df| > 120o as “Away”. Each of the two “transverse” regions have area DhDf = 2x60o = 4p/6. The overall “transverse” region is the sum of the two transverse regions (DhDf = 2x120o = 4p/3). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Charged Particle Density Df Dependence Log Scale! Leading Jet Min-Bias 0.25 per unit h-f Shows the Df dependence of the charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 relative to jet#1 (rotated to 270o) for “leading jet” events 30 < ET(jet#1) < 70 GeV. Also shows charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 for “min-bias” collisions. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Charged Particle Density Df Dependence Refer to this as a “Leading Jet” event Subset Refer to this as a “Back-to-Back” event Look at the “transverse” region as defined by the leading jet (JetClu R = 0.7, |h| < 2) or by the leading two jets (JetClu R = 0.7, |h| < 2). “Back-to-Back” events are selected to have at least two jets with Jet#1 and Jet#2 nearly “back-to-back” (Df12 > 150o) with almost equal transverse energies (ET(jet#2)/ET(jet#1) > 0.8) and with ET(jet#3) < 15 GeV. Shows the Df dependence of the charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 relative to jet#1 (rotated to 270o) for 30 < ET(jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Charged Particle Density Df Dependence “Leading Jet” “Back-to-Back” 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the charged particle density, dNchg/dhdf, for charged particles in the range pT > 0.5 GeV/c and |h| < 1 relative to jet#1 (rotated to 270o) for 30 < ET(jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” PTsum Density versus ET(jet#1) “Leading Jet” Hard Radiation! “Back-to-Back” Min-Bias 0.24 GeV/c per unit h-f Shows the average charged PTsum density, dPTsum/dhdf, in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” PTsum Density versus ET(jet#1) 30-70 GeV 95-130 GeV Very little dependence on ET(jet#1) in the “transverse” region for “back-to-back” events! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransMIN” PTsum Density versus ET(jet#1) “Leading Jet” “Back-to-Back” “transMIN” is very sensitive to the “beam-beam remnant” component of the “underlying event”! Use the leading jet to define the MAX and MIN “transverse” regions on an event-by-event basis with MAX (MIN) having the largest (smallest) charged particle density. Shows the “transMIN” charge particle density, dNchg/dhdf, for pT > 0.5 GeV/c, |h| < 1 versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” PTsum Density PYTHIA Tune A vs HERWIG “Leading Jet” “Back-to-Back” Now look in detail at “back-to-back” events in the region 30 < ET(jet#1) < 70 GeV! Shows the average charged PTsum density, dPTsum/dhdf, in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (uncorrected) data with PYTHIA Tune A and HERWIG after CDFSIM. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Charged PTsum Density PYTHIA Tune A vs HERWIG HERWIG (without multiple parton interactions) does not produces enough PTsum in the “transverse” region for 30 < ET(jet#1) < 70 GeV! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Charged PTsum Density PYTHIA Tune A vs HERWIG dPT/dhdf + 0.2 GeV/c 308 MeV in R = 0.7 cone! Add 0.2 GeV/c per unit h-f to HERWIG scalar PTsum density, dPTsum/dhdf. This corresponds to 0.2 × 4p = 2.5 GeV/c in the entire range pT > 0.5 GeV/c, |h| < 1. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” PTmax versus ET(jet#1) “Leading Jet” Highest pT particle in the “transverse” region! “Back-to-Back” Min-Bias Use the leading jet to define the “transverse” region and look at the maximum pT charged particle in the “transverse” region, PTmaxT. Shows the average PTmaxT, in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events compared with the average maximum pT particle, PTmax, in “min-bias” collisions (pT > 0.5 GeV/c, |h| < 1). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Back-to-Back “Associated” Charged Particle Densities Maximum pT particle in the “transverse” region! “Associated” densities do not include PTmaxT! Use the leading jet in “back-to-back” events to define the “transverse” region and look at the maximum pT charged particle in the “transverse” region, PTmaxT. Look at the Df dependence of the “associated” charged particle and PTsum densities, dNchg/dhdf and dPTsum/dhdf for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmaxT) relative to PTmaxT. Rotate so that PTmaxT is at the center of the plot (i.e. 180o). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Back-to-Back “Associated” Charged Particle Densities “Associated” densities do not include PTmaxT! Jet#2 Region ?? Log Scale! Look at the Df dependence of the “associated” charged particle density, dNchg/dhdf for charged particles (pT > 0.5 GeV/c, |h| < 1, not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 0.5 GeV/c, PTmaxT > 1.0 GeV/c and PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < ET(jet#1) < 70 GeV. Shows “jet structure” in the “transverse” region (i.e. the “birth” of the 3rd & 4th jet). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Back-to-Back “Associated” Charged Particle Densities charge density “Back-to-Back” “associated” density 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Back-to-Back “Associated” Charged Particle Densities charge density “Back-to-Back” “associated” density 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, PTmaxT > 2.0 GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS Jet Topologies QCD Three Jet Topology QCD Four Jet Topology 0.5 1.0 1.5 2.0 Polar Plot Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, PTmaxT > 2.0 GeV/c (not including PTmaxT) relative to PTmaxT (rotated to 180o) and the charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1, relative to jet#1 (rotated to 270o) for “back-to-back events” with 30 < ET(jet#1) < 70 GeV. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Back-to-Back” vs “Min-Bias” “Associated” Charge Density “Birth” of jet#3 in the “transverse” region! “Back-to-Back” “Associated” Density “Min-Bias” “Associated” Density Log Scale! “Birth” of jet#1 in “min-bias” collisions! Shows the Df dependence of the “associated” charged particle density, dNchg/dhdf for pT > 0.5 GeV/c, |h| < 1 (not including PTmaxT) relative to PTmaxT (rotated to 180o) for PTmaxT > 2.0 GeV/c, for “back-to-back” events with 30 < ET(jet#1) < 70 GeV. Shows the data on the Df dependence of the “associated” charged particle density, dNchg/dhdf, pT > 0.5 GeV/c, |h| < 1 (not including PTmax) relative to PTmax (rotated to 180o) for “min-bias” events with PTmax > 2.0 GeV/c. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Associated” PTsum Density PYTHIA Tune A vs HERWIG HERWIG (without multiple parton interactions) does not produce enough “associated” PTsum in the direction of PTmaxT! PTmaxT > 0.5 GeV/c And HERWIG (without multiple parton interactions) does not produce enough PTsum in the direction opposite of PTmaxT! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Associated” PTsum Density PYTHIA Tune A vs HERWIG For PTmaxT > 2.0 GeV both PYTHIA and HERWIG produce slightly too much “associated” PTsum in the direction of PTmaxT! PTmaxT > 2 GeV/c But HERWIG (without multiple parton interactions) produces too few particles in the direction opposite of PTmaxT! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Jet Multiplicity Max pT in the “transverse” region! HERWIG (without multiple parton interactions) does not have equal amounts of 3 and 4 jet topologies! Data have about equal amounts of 3 and 4 jet topologies! Shows the data on the number of jets (JetClu, R = 0.7, |h| < 2, ET(jet) > 3 GeV) for “back-to-back” events with 30 < ET(jet#1) < 70 GeV and PTmaxT > 2.0 GeV/c. Compares the (uncorrected) data with HERWIG after CDFSIM. Compares the (uncorrected) data with PYTHIA Tune A after CDFSIM. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” <pT> versus “Transverse” Nchg “Leading Jet” “Back-to-Back” Min-Bias Look at the <pT> of particles in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus the number of particles in the “transverse” region: <pT> vs Nchg. Shows <pT> versus Nchg in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) for “Leading Jet” and “Back-to-Back” events with 30 < ET(jet#1) < 70 GeV compared with “min-bias” collisions. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse 1” Region vs “Transverse 2” Region “Leading Jet” “Back-to-Back” Use the leading jet to define two “transverse” regions and look at the correlations between “transverse 1” and “transverse 2”. Shows the average number of charged particles in the “transverse 2” region versus the number of charged particles in the “transverse 1” region for pT > 0.5 GeV/c and |h| < 1 for “Leading Jet” and “Back-to-Back” events. Shows the average pT of charged particles in the “transverse 2” region versus the number of charged particles in the “transverse 1” region for pT > 0.5 GeV/c and |h| < 1 for “Leading Jet” and “Back-to-Back” events. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse 1” Region vs “Transverse 2” Region MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Recent CDF Run 2 “Underlying Event” Results The “underlying event” consists of hard initial & final-state radiation plus the “beam-beam remnants” and possible multiple parton interactions. “Transverse” region is very sensitive to the “underlying event”! New CDF Run 2 results (L = 385 pb-1) : Two Classes of Events: “Leading Jet” and “Back-to-Back”. Two “Transverse” regions: “transMAX”, “transMIN”, “transDIF”. Data Corrected to the Particle Level: unlike our previous CDF Run 2 “underlying event” analysis which used JetClu to define “jets” and compared uncorrected data with the QCD Monte-Carlo models after detector simulation, this analysis uses the MidPoint jet algorithm and corrects the observables to the particle level. The corrected observables are then compared with the QCD Monde-Carlo models at the particle level. For the 1st time we study the energy density in the “transverse” region. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” Observables Particle and Detector Level “Leading Jet” Observable Particle Level Detector Level dNchg/dhdf Number of charged particles per unit h-f (pT > 0.5 GeV/c, |h| < 1) Number of “good” charged tracks dPTsum/dhdf Scalar pT sum of charged particles per unit h-f Scalar pT sum of “good” charged tracks per unit h-f <pT> Average pT of charged particles Average pT of “good” charged tracks PTmax Maximum pT charged particle PTmax = 0 for no charged particle Maximum pT “good” charged tracks PTmax = 0 for no “good” charged track dETsum/dhdf Scalar ET sum of all particles (all pT, |h| < 1) Scalar ET sum of all calorimeter towers (ET > 0.1 GeV, |h| < 1) PTsum/ETsum Scalar pT sum of charged particles divided by the scalar ET sum of all particles (all pT, |h| < 1) Scalar pT sum of “good” charged tracks calorimeter towers (ET > 0.1 GeV, |h| < 1) “Back-to-Back” MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransMAX/MIN” Nchg Density PYTHIA Tune A vs HERWIG “Leading Jet” “Back-to-Back” Shows the charged particle density, dNchg/dhdf, in the “transMAX” and “transMIN” region (pT > 0.5 GeV/c, |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG (without MPI) at the particle level. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” <PT> and <PTmax> PYTHIA Tune A vs HERWIG “Leading Jet” “Back-to-Back” Shows the average transverse momentum, <PT>, and <PTmax> for charged particles in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG (without MPI) at the particle level. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransMAX/MIN” ETsum Density PYTHIA Tune A vs HERWIG “Leading Jet” “Back-to-Back” Shows the ETsum density, dETsum/dhdf, in the “transMAX” and “transMIN” region (all particles |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG (without MPI) at the particle level. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransDIF” ETsum Density PYTHIA Tune A vs HERWIG “Leading Jet” “Back-to-Back” “transDIF” is very sensitive to the “hard scattering” component of the “underlying event”! Use the leading jet to define the MAX and MIN “transverse” regions on an event-by-event basis with MAX (MIN) having the largest (smallest) charged PTsum density. Shows the “transDIF” = MAX-MIN ETsum density, dETsum/dhdf, for all particles (|h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransMAX/MIN” ETsum Density PYTHIA Tune A vs JIMMY JIMMY was tuned to fit the energy density in the “transverse” region for “leading jet” events! “Leading Jet” “Back-to-Back” Shows the ETsum density, dETsum/dhdf, in the “transMAX” and “transMIN” region (all particles |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c, default = 2.5 GeV/c) at the particle level. JIMMY: MPI J. M. Butterworth J. R. Forshaw M. H. Seymour JIMMY Runs with HERWIG and adds multiple parton interactions! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransMAX/MIN” PTsum Density PYTHIA Tune A vs JIMMY “Leading Jet” “Back-to-Back” Shows the charged PTsum density, dETsum/dhdf, in the “transMAX” and “transMIN” region (pT > 0.5 GeV/c, |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“TransMAX/MIN” Nchg Density PYTHIA Tune A vs JIMMY “Leading Jet” “Back-to-Back” Shows the charged particle density, dNchg/dhdf, in the “transMAX” and “transMIN” region (pT > 0.5 GeV/c, |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” <PT> PYTHIA Tune A vs JIMMY “Leading Jet” “Back-to-Back” Shows the charged particle <PT> in the “transverse” region (pT > 0.5 GeV/c, |h| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events. Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS Possible Scenario?? PYTHIA Tune A fits the charged particle PTsum density for pT > 0.5 GeV/c, but it does not produce enough ETsum for towers with ET > 0.1 GeV. It is possible that there is a sharp rise in the number of particles in the “underlying event” at low pT (i.e. pT < 0.5 GeV/c). Perhaps there are two components, a vary “soft” beam-beam remnant component (Gaussian or exponential) and a “hard” multiple interaction component. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Rick Field – Florida/CDF/CMS CDF Run 1 PT(Z) PYTHIA 6.2 CTEQ5L UE Parameters Parameter Tune A Tune A25 Tune A50 MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(67) 4.0 MSTP(91) PARP(91) 1.0 2.5 5.0 PARP(93) 15.0 25.0 ISR Parameter Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune A (<pT(Z)> = 9.7 GeV/c), Tune A25 (<pT(Z)> = 10.1 GeV/c), and Tune A50 (<pT(Z)> = 11.2 GeV/c). Vary the intrensic KT! Intrensic KT MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

CDF Run 1 PT(Z) PYTHIA 6.2 CTEQ5L Tune used by the CDF-EWK group! Parameter Tune A Tune AW MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.0 1.25 PARP(64) 0.2 PARP(67) 4.0 MSTP(91) PARP(91) 2.1 PARP(93) 5.0 15.0 UE Parameters ISR Parameters Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune A (<pT(Z)> = 9.7 GeV/c), and PYTHIA Tune AW (<pT(Z)> = 11.7 GeV/c). Effective Q cut-off, below which space-like showers are not evolved. Intrensic KT The Q2 = kT2 in as for space-like showers is scaled by PARP(64)! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Jet-Jet Correlations (DØ) Df Jet#1-Jet#2 Jet#1-Jet#2 Df Distribution MidPoint Cone Algorithm (R = 0.7, fmerge = 0.5) L = 150 pb-1 (Phys. Rev. Lett. 94 221801 (2005)) Data/NLO agreement good. Data/HERWIG agreement good. Data/PYTHIA agreement good provided PARP(67) = 1.0→4.0 (i.e. like Tune A, best fit 2.5). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

CDF Run 1 PT(Z) PYTHIA 6.2 CTEQ5L Parameter Tune DW Tune AW MSTP(81) 1 MSTP(82) 4 PARP(82) 1.9 GeV 2.0 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 1.0 0.9 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 2.5 4.0 MSTP(91) PARP(91) 2.1 PARP(93) 15.0 UE Parameters ISR Parameters Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune DW, and HERWIG. Tune DW uses D0’s perfered value of PARP(67)! Intrensic KT Tune DW has a lower value of PARP(67) and slightly more MPI! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” Nchg Density PYTHIA 6.2 CTEQ5L Three different amounts of MPI! UE Parameters Parameter Tune AW Tune DW Tune BW MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 1.0 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 4.0 2.5 MSTP(91) PARP(91) 2/5 PARP(93) 15.0 ISR Parameter Shows the “transverse” charged particle density, dN/dhdf, versus PT(jet#1) for “leading jet” events at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune DW, Tune BW, and HERWIG (without MPI). Shows the “transverse” charged particle density, dN/dhdf, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune DW, ATLAS, and HERWIG (without MPI). Intrensic KT Three different amounts of ISR! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

“Transverse” PTsum Density PYTHIA 6.2 CTEQ5L Three different amounts of MPI! UE Parameters Parameter Tune AW Tune DW Tune BW MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 1.0 PARP(86) 0.95 PARP(89) 1.8 TeV PARP(90) 0.25 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 4.0 2.5 MSTP(91) PARP(91) 2/5 PARP(93) 15.0 ISR Parameter Shows the “transverse” charged PTsum density, dPT/dhdf, versus PT(jet#1) for “leading jet” events at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune DW, Tune BW, and HERWIG (without MPI). Shows the “transverse” charged PTsum density, dPT/dhdf, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune DW, ATLAS, and HERWIG (without MPI). Intrensic KT Three different amounts of ISR! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Identical to DW at 1.96 TeV but uses ATLAS extrapolation to the LHC! PYTHIA 6.2 Tunes PYTHIA 6.2 CTEQ5L s(MPI) at 1.96 TeV s(MPI) at 14 TeV Tune A 309.7 mb 484.0 mb Tune DW 351.7 mb 549.2 mb Tune DWT 829.1 mb ATLAS 324.5 mb 768.0 mb Parameter Tune A Tune DW Tune DWT ATLAS MSTP(81) 1 MSTP(82) 4 PARP(82) 2.0 GeV 1.9 GeV 1.9409 GeV 1.8 GeV PARP(83) 0.5 PARP(84) 0.4 PARP(85) 0.9 1.0 0.33 PARP(86) 0.95 0.66 PARP(89) 1.8 TeV 1.96 TeV 1.0 TeV PARP(90) 0.25 0.16 PARP(62) 1.25 PARP(64) 0.2 PARP(67) 4.0 2.5 MSTP(91) PARP(91) 2.1 PARP(93) 5.0 15.0 CDF Run 2 Data! Shows the “transverse” charged PTsum density, dPT/dhdf, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI). Shows the “transverse” charged average pT, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI). Shows the “transverse” charged particle density, dN/dhdf, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI). Identical to DW at 1.96 TeV but uses ATLAS extrapolation to the LHC! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

The “Underlying Event” in High PT Jet Production (LHC) Charged particle density versus PT(jet#1) The “Underlying Event” “Underlying event” much more active at the LHC! Charged particle density in the “Transverse” region versus PT(jet#1) at 1.96 TeV for PY Tune AW and HERWIG (without MPI). Charged particle density in the “Transverse” region versus PT(jet#1) at 14 TeV for PY Tune AW and HERWIG (without MPI). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

MIT Search Scheme: Vista/Sleuth Exclusive 3 Jet Final State Challenge CDF Data At least 1 Jet (“trigger” jet) (PT > 40 GeV/c, |h| < 1.0) Bruce Knuteson Normalized to 1 PYTHIA Tune A Exactly 3 jets (PT > 20 GeV/c, |h| < 2.5) Order Jets by PT Jet1 highest PT, etc. R(j2,j3) Khaldoun Makhoul Georgios Choudalakis Markus Klute Conor Henderson Ray Culbertson Gene Flanagan MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Exc3J: R(j2,j3) Normalized The data have more 3 jet events with small R(j2,j3)!? Let Ntrig40 equal the number of events with at least one jet with PT > 40 geV and |h| < 1.0 (this is the “offline” trigger). Let N3Jexc20 equal the number of events with exactly three jets with PT > 20 GeV/c and |h| < 2.5 which also have at least one jet with PT > 40 GeV/c and |h| < 1.0. Normalized to N3JexcFr Let N3JexcFr = N3Jexc20/Ntrig40. The is the fraction of the “offline” trigger events that are exclusive 3-jet events. The CDF data on dN/dR(j2,j3) at 1.96 TeV compared with PYTHIA Tune AW (PARP(67)=4), Tune DW (PARP(67)=2.5), Tune BW (PARP(67)=1). PARP(67) affects the initial-state radiation which contributes primarily to the region R(j2,j3) > 1.0. R > 1.0 MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

excess number of events Perhaps this is related to the 3Jexc R(j2,j3) Normalized I do not understand the excess number of events with R(j2,j3) < 1.0. Perhaps this is related to the “soft energy” problem?? For now the best tune is PYTHIA Tune DW. Let Ntrig40 equal the number of events with at least one jet with PT > 40 geV and |h| < 1.0 (this is the “offline” trigger). Let N3Jexc20 equal the number of events with exactly three jets with PT > 20 GeV/c and |h| < 2.5 which also have at least one jet with PT > 40 GeV/c and |h| < 1.0. Normalized to N3JexcFr Let N3JexcFr = N3Jexc20/Ntrig40. The is the fraction of the “offline” trigger events that are exclusive 3-jet events. The CDF data on dN/dR(j2,j3) at 1.96 TeV compared with PYTHIA Tune DW (PARP(67)=2.5) and HERWIG (without MPI). Final-State radiation contributes to the region R(j2,j3) < 1.0. If you ignore the normalization and normalize all the distributions to one then the data prefer Tune BW, but I believe this is misleading. R < 1.0 MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

QCD Monte-Carlo Models: Lepton-Pair Production “Hard Scattering” Component “Underlying Event” Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation or modified leading log approximation). The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI). Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial and final-state radiation. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

The “Central” Region in Drell-Yan Production Look at the charged particle density and the PTsum density in the “central” region! Charged Particles (pT > 0.5 GeV/c, |h| < 1) After removing the lepton-pair everything else is the “underlying event”! Look at the “central” region after removing the lepton-pair. Study the charged particles (pT > 0.5 GeV/c, |h| < 1) and form the charged particle density, dNchg/dhdf, and the charged scalar pT sum density, dPTsum/dhdf, by dividing by the area in h-f space. MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Drell-Yan Production (Run 2 vs LHC) Lepton-Pair Transverse Momentum <pT(m+m-)> is much larger at the LHC! Shapes of the pT(m+m-) distribution at the Z-boson mass. Z Average Lepton-Pair transverse momentum at the Tevatron and the LHC for PYTHIA Tune DW and HERWIG (without MPI). Shape of the Lepton-Pair pT distribution at the Z-boson mass at the Tevatron and the LHC for PYTHIA Tune DW and HERWIG (without MPI). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

The “Underlying Event” in Drell-Yan Production Charged particle density versus M(pair) HERWIG (without MPI) is much less active than PY Tune AW (with MPI)! “Underlying event” much more active at the LHC! Z Z Charged particle density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune AW and HERWIG (without MPI). Charged particle density versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune AW and HERWIG (without MPI). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Extrapolations to the LHC: Drell-Yan Production Charged particle density versus M(pair) The “Underlying Event” Tune DW and DWT are identical at 1.96 TeV, but have different MPI energy dependence! Z Z Average charged particle density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune BW, Tune DW and HERWIG (without MPI). Average charged particle density versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Extrapolations to the LHC: Drell-Yan Production Charged particle charged PTsum density versus M(pair) The “Underlying Event” The ATLAS tune has a much “softer” distribution of charged particles than the CDF Run 2 Tunes! Z Z Average charged PTsum density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune BW, Tune DW and HERWIG (without MPI). Average charged PTsum density versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Extrapolations to the LHC: Drell-Yan Production Charged particle density versus M(pair) The “Underlying Event” The ATLAS tune has a much “softer” distribution of charged particles than the CDF Run 2 Tunes! Charged Particles (|h|<1.0, pT > 0.5 GeV/c) Charged Particles (|h|<1.0, pT > 0.9 GeV/c) Z Z Average charged particle density (pT > 0.5 GeV/c) versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI). Average charged particle density (pT > 0.9 GeV/c) versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

Summary and Conclusions “Min-Bias” is not well defined. What you see depends on what you trigger on! Every trigger produces some biases. We have learned a lot about “Min-Bias” at the Tevatron, but we do not know what to expect at the LHC. This will depend on the Min-Bias Trigger! I must double check my analysis and get it “blessed” before you can trust what I have shown! Very preliminary results seem to show that pile-up conspires to help give you what you ask for (i.e. satisfy your “trigger” or your event selection)! If true this means the pile-up is not the same for all processes. It is process (i.e. trigger) dependent! We are making good progress in understanding and modeling the “underlying event”. However, we do not yet have a perfect fit to all the features of the CDF “underlying event” data! Need to measure “Min-Bias” and the “underlying event” at the LHC as soon as possible and tune the Monte-Carlo modles and compare with CDF! MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS

UE&MB@CMS UE&MB@CMS Study charged particles and muons using the CMS detector at the LHC (as soon as possible)! Min-Bias Studies: Charged particle distributions and correlations. Construct “charged particle jets” and look at “mini-jet” structure and the onset of the “underlying event”. (requires only charged tracks) “Underlying Event” Studies: The “transverse region” in “leading Jet” and “back-to-back” charged particle jet production and the “central region” in Drell-Yan production. (requires charged tracks and muons for Drell-Yan) Drell-Yan Studies: Transverse momentum distribution of the lepton-pair versus the mass of the lepton-pair, <pT(pair)>, <pT2(pair)>, ds/dpT(pair) (only requires muons). Event structure for large lepton-pair pT (i.e. mm +jets, requires muons). MCnet07 - Durham - Part 2 April 18-20, 2007 Rick Field – Florida/CDF/CMS