Chapters 4 & 5 Addressing Will go over Exam 2

Slides:



Advertisements
Similar presentations
Chapter 5 IPv4 Addresses TCP/IP Protocol Suite
Advertisements

TCP/IP Protocol Suite 1 Chapter 4 Objectives Upon completion you will be able to: IP Addresses: Classful Addressing Understand IPv4 addresses and classes.
TCP/IP Protocol Suite 1 Chapter 4 Objectives Upon completion you will be able to: IP Addresses: Classful Addressing Understand IPv4 addresses and classes.
1 Subnetting and Supernetting Oleh: Abdul Kholiq,S.Kom
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 4 IP Addresses: Classful Addressing.
IP Addresses: Classful Addressing An IP address is a 32-bit address.
19.1 Chapter 19 Network Layer: Logical Addressing Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 19 Network Layer Logical Addressing © 2012 by McGraw-Hill Education. This is proprietary material.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 5 Subnetting/Supernetting and Classless Addressing.
1 1- What is the fundamental difference between network layer and data-link layer? Data-link layer only deals with efficient transmission of information.
Subnet & Classless Address Extensions Linda Wu (CMPT )
ECE 4110 – Internetwork Programming Subnetting, Supernetting, and Classless Addressing.
1 Kyung Hee University Part 4 : Network Layer. 2 Kyung Hee University Role and Position of Network Layer o Network layer in the Internet model is responsible.
IP Addressing and Network Software. IP Addressing  A computer somewhere in the world needs to communicate with another computer somewhere else in the.
IP Addresses & Classes Presented By: M.Usman Khan Ghauri Nauman Aslam.
CSISCSIS Dr. ClincyLecture1 SUPERNETTING Although class A and B addresses are dwindling – there are plenty of class C addresses The problem with C addresses.
1 Kyung Hee University Prof. Choong Seon HONG IP Addressing : Classful Addressing.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 SUBNETTING.
TCP/IPTCP/IP Dr. ClincyLecture1 Chapter 5: Addressing (Part 2 of 3) Agenda Special Addresses Classful - Subnetting Classful - Supernetting.
19.1 Chapter 19 Network Layer: Logical Addressing Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
21-IP addressing Dr. John P. Abraham Professor UTPA.
CS4500CS4500 Dr. ClincyLecture1 Lecture #2 Chapter 5: Addressing (Part 2 of 3)
Chapter 4 IP Addressing : Classful Addressing
Subnetting When an organization is given a block of class A, B, or C address, the first address in the block defines the network address. This address.
Chapter 4 Objectives Upon completion you will be able to: Classful Internet Addressing Understand IPv4 addresses and classes Identify the class of an.
1 Chapter 4 IP Addressing : Classful Addressing Chapter 4 IP Addressing : Classful Addressing Mi-Jung Choi Dept. of Computer Science, KUN
1 Kyung Hee University Prof. Choong Seon HONG Subnetting/ Supernetting and Classless Addressing.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 IPv4 Addresses.
CS4500CS4500 Dr. ClincyLecture1 Lecture #6 Chapter 5: Addressing (part 1 of 3) Address Structure Classful Addressing Number Systems (Appendix B) Mask –
Chapter 5 IPv4 Address.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Network Layer PART IV.
21-IP addressing Dr. John P. Abraham Professor UTPA.
IP ADDRESSING Lecture 2: IP addressing Networks and Communication Department 1.
CS4500CS4500 Dr. ClincyLecture1 Lecture #1 Chapter 5: Addressing (part 1 of 3)
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 IPv4 Addresses.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Subnetting.
TCP/IP Protocol Suite 1 Chapter 4 Objectives Upon completion you will be able to: IP Addresses: Classful Addressing Understand IPv4 addresses and classes.
TCP/IP Protocol Suite 1 Objectives Upon completion you will be able to: IP Addresses: Classful Addressing Understand IPv4 addresses and classes Identify.
Network Layer/IP Protocols 1. Outline IP Datagram (IPv4) NAT Connection less and connection oriented service 2.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 IP Addresses: Classful Addressing.
UNIT 4 NETWORK LAYER. Position of network layer 7/8/2016 UNIT-3 : NETWORK LAYER 2.
Subnetting Subnetting is not in the CIS221-3 Syllabus
Behrouz A. Forouzan TCP/IP Protocol Suite, 3 rd Ed. IP Addressing.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Subnetting/Supernetting and Classless Addressing.
Internet Architecture
Chapters 4 & 5 Addressing Part 2 of 2
IP Addresses: Classful Addressing
Subnetting and Supernetting
4.3 Network Layer Logical Addressing
IP Addresses: Classful Addressing IP Addresses. CONTENTS INTRODUCTION CLASSFUL ADDRESSING Different Network Classes Subnetting Classless Addressing Supernetting.
Chapter 5 IPv4 Addresses TCP/IP Protocol Suite
Chapters 4 & 5 Addressing Will go over Exam 1
Chapter-5 TCP/IP Suite.
PART IV Network Layer.
4 Network Layer Part I Computer Networks Tutun Juhana
IP Addresses: Classful Addressing
Subnetting.
IP V4 Subnetting By: Muhammad Hanif.
CS 1302 Computer Networks — Unit - 3 — — Network Layer —
IP Addresses: Classful Addressing
Chapter 5 Addressing Dr. Clincy Lecture.
IDC part II (week 6-12) 6 weeks will cover three layers of interest
Chapter 5 Addressing Dr. Clincy Lecture.
Subnetting/Supernetting and Classless Addressing
Ch 3: Underlying Technologies (remainder)
Dr. John P. Abraham Professor UTRGV
Chapters 4 & 5 Addressing Will go over Exam 1
Chapters 4 & 5 Addressing Will go over Exam 1
Chapters 4 & 5 Addressing Will go over Exam 1
Introduction to Network
Presentation transcript:

Chapters 4 & 5 Addressing Will go over Exam 2 Dr. Clincy Lecture

Mask Given the network address, we can easily determine the block and range of addresses Suppose given the IP address, can we determine the network address (beginning of the block) ? To route packets to the correct network, a router must extract the network address from the destination IP address For example, given 134.45.78.2, we know this is a class B, therefore 134.45 is the netid and 134.45.0.0 is the network address (starting address of the block) How would we EXTRACT the network address from the IP address? We would use a MASK. A mask is a 32-bit binary number that gives the first address in the block (the network address) when bitwise ANDed with an address in the block. Dr. Clincy Lecture

AND operation If bit is ANDed with 1, it’s preserved If bit is ANDed with 0, it’s changed to a 0. There are 3 default masks: one for each class. The default masks preserve the netid when ANDed with the addresses Class A Default Mask: 255.0.0.0 Class B Default Mask: 255.255.0.0 Class C Default Mask: 255.255.255.0 A simple way to determine the netid for un-subnetted cases: (1) if mask byte is 255, retain corresponding byte of the address, (2) if mask byte is 0, set corresponding address byte to 0. Dr. Clincy Lecture

Examples Given the address 23.56.7.91 and the default class A mask, find the beginning address (network address). The default mask is 255.0.0.0, which means that only the first byte is preserved and the other 3 bytes are set to 0s. The network address is 23.0.0.0. Solution Given the address 132.6.17.85 and the default class B mask, find the beginning address (network address). The default mask is 255.255.0.0, which means that the first 2 bytes are preserved and the other 2 bytes are set to 0s. The network address is 132.6.0.0. Solution Given the address 201.180.56.5 and the class C default mask, find the beginning address (network address). The default mask is 255.255.255.0, which means that the first 3 bytes are preserved and the last byte is set to 0. The network address is 201.180.56.0. Solution Dr. Clincy Lecture

5-bit Address Space Illustration No Netid case 32 addresses/block Number of blocks: 1 Address range per block: 0 to 31 Netids: N/A Network Addresses : 00000 Broadcast Addresses: 11111 Dr. Clincy Lecture

5-bit Address Space Illustration 1-bit Netid case 16 addresses/block Number of blocks: 2 Address range per block: 0 to 15 Netids: 0, 1 Network Addresses : 00000, 10000 Broadcast Addresses: 01111, 11111 What is the mask ? Dr. Clincy Lecture

5-bit Address Space Illustration 2-bit Netid Case 8 addresses/block Number of blocks: 4 Address range per block: 0 to 7 Netids: 00, 01, 10, 11 Network Addresses : 00000, 01000, 10000, 11000 Broadcast Addresses: 00111, 01111, 10111, 11111 What is the mask ? Dr. Clincy Lecture

5-bit Address Space Illustration 3-bit Netid Case 4 addresses/block Number of blocks: 8 Address range per block: 0 to 3 Netids: 000, 001, 010, 011, 100, 101, 110, 111 Network Addresses : 00000, 00100, 01000, 01100 10000, 10100, 11000, 11100 Broadcast Addresses: 00011, 00111, 01011, 01111 10011, 10111, 11011, 11111 What is the mask ? Dr. Clincy Lecture

Mixing 3-bit & 2-bit Cases (think of the 32-bit case) 4 addresses/block and 8 addresses/block Number of blocks: 6 Address range per block: 0 to 3 and 0 to 7 Netids: 000, 001, 010, 011, 10, 11 Network Addresses : 00000, 00100, 01000, 01100 10000, 11000 Broadcast Addresses: 00011, 00111, 01011, 01111 10111, 11111 Dr. Clincy Lecture

Multihomed devices As we mentioned that, any device with one or more connections to the Internet will need an IP address for EACH connection – such devices are called “multihomed” devices. A Router could be a multihomed device Dr. Clincy Lecture

Example of direct broadcast address Router sending to all hosts on a network If the hostid is all 1’s, it’s called a “broadcast address” and the router use it to send a packet to all host in a specific network. In this case, hosts 20, 64, 126 and etc. will receive the packet from the router Example of limited broadcast address Host sending to all other hosts on a network If the hostid and netid are all 1’s, it’s called a “limited broadcast address”. If the host wants to send a packet to all host in a specific network, it would use this address. The router would block this address so that data stays contained within a specific network. Dr. Clincy Lecture

Example of this host on this address IPless Host sending message to bootstrap server An address of all 0’s is used during bootstrap time if the host doesn’t know it’s IP address. The un-named host sends an all 0 source address and limited broadcast (all 1’s) destination address to the bootstrap server. Example of specific host on this network Host sending to some other specific host on a network An address with a netid of all 0’s is used by a host or router to send another host with in the same network a message. Dr. Clincy Lecture

Example of loopback address The IP address with the 1st byte equal to 127 is used for the loop back address. Loopback address is used to test software on a machine – the packet never leaves the machine – it returns to the protocol software Example: a “ping” command can send a packet with a loopback address as the destination address to see if the IP software is capable of receiving and processing a packet. Dr. Clincy Lecture

Sample internet With your new found knowledge, think about Project 2 Ethernet ATM Token Ring Ethernet With your new found knowledge, think about Project 2 Dr. Clincy Lecture

Chapter 5 Addressing Dr. Clincy Lecture

Subnetting Dr. Clincy Lecture

SUBNETTING When we talked about CLASSFUL addressing – we realized the problem of wasted host addresses and depleting available network addresses. In subnetting, a network is divided into several smaller networks called subnetworks or subnets – each subnet will have it’s own address Typically, there are 2 steps in reaching a destination: first we must reach the network (netid) and then we reach the destination (hostid) Dr. Clincy Lecture

A network with two levels of hierarchy (not subnetted) The 2 level approach is not enough some times – you can only have 1 physical network – in example, all host are at the same level – no grouping Dr. Clincy Lecture

A network with three levels of hierarchy (subnetted) (0-63) (64-127) With subnetting, hosts can be grouped (128-191) (192-255) Dr. Clincy Lecture

Addresses in a network with and without subnetting With subnetting, there are 3 levels (versus 2 levels). Partition the hostid space into subnetid and hostid. (1st) network, (2nd) subnetwork and (3rd) host Dr. Clincy Lecture

Similar to Hierarchy concept in a telephone number Dr. Clincy Lecture

Default mask and subnet mask Dr. Clincy Lecture

Finding the Subnet Address Given an IP address, we can find the subnet address the same way we found the network address in the previous chapter. We apply the mask to the address. We can do this in two ways: straight or short-cut. Straight Method In the straight method, we use binary notation for both the address and the mask and then apply the AND operation to find the subnet address. Short-Cut Method ** If the byte in the mask is 255, copy the byte in the address. ** If the byte in the mask is 0, replace the byte in the address with 0. ** If the byte in the mask is neither 255 nor 0, we write the mask and the address in binary and apply the AND operation. Dr. Clincy Lecture

Subnet Mask Form In the early days, non-contiguous 1’s masks were used (0’s and 1’s could alternate) Today, as a best practice, contiguous 1’s masks are used In either case, the black box can perform the “masking” process Dr. Clincy Lecture

Example 1 What is the subnetwork address if the destination address is 200.45.34.56 and the subnet mask is 255.255.240.0? Solution 11001000 00101101 00100010 00111000 11111111 11111111 11110000 00000000 11001000 00101101 00100000 00000000 The subnetwork address is 200.45.32.0. Dr. Clincy Lecture

Recall - 5-bit Address Space Illustration 1-bit Netid case (no subnets) 16 addresses/block Number of blocks: 2 Address range per block: 0 to 15 Netids: 0, 1 Network Addresses : 00000, 10000 Broadcast Addresses: 01111, 11111 Dr. Clincy Lecture

5-bit Address Space Illustration subnet 1-bit Subnet case Number of blocks/networks: 2 Number subnets per block: 2 8 addresses/subnet Address range per subnet: 0 to 7 Subnet ids: 0, 1 Network Addresses : 00000, 01000, 10000, 11000 Broadcast Addresses: 00111, 01111, 10111, 11111 Dr. Clincy Lecture

5-bit Address Space Illustration subnet 2-bit Subnet case Number of blocks/networks: 2 Number subnets per block: 4 4 addresses/subnet Address range per subnet: 0 to 3 Subnet ids: 00, 01, 10, 11 Network Addresses : 00000, 00100, 01000, 01100 10000, 10100, 11000, 11100 Broadcast Addresses: 00011, 00111, 01011, 01111 10011, 10111, 11011, 11111 Dr. Clincy Lecture

Example 2 What is the subnetwork address if the destination address is 19.30.84.5 and the mask is 255.255.192.0? Dr. Clincy Lecture

Comparison of a default mask and a subnet mask A portion of the hostid space is divided between some contiguous 1’s and 0’s Dr. Clincy Lecture

The number of subnets must be a power of 2. Determine the number of subnets added by looking at the number of 1s added to the default mask and performing 2 raised to that number For example, 23 = 8 subnets Dr. Clincy Lecture

Example 3 A company is granted the site address 201.70.64.0 (class C). The company needs six subnets. Design the subnets. Solution The number of 1s in the default mask is 24 (class C). The company needs six subnets. This number 6 is not a power of 2. The next number that is a power of 2 is 8 (23). We need 3 more 1s in the subnet mask. The total number of 1s in the subnet mask is 27 (24 + 3). The total number of 0s is 5 (32 - 27). The mask would be Dr. Clincy Lecture

The number of subnets is 8. Solution (Continued) 11111111 11111111 11111111 11100000 or 255.255.255.224 The number of subnets is 8. The number of addresses in each subnet is 25 (5 is the number of 0s) or 32. Dr. Clincy Lecture

Example 3 Dr. Clincy Lecture

Exam 2 Results & Grading Scale Average Score = 49, Average Grade = 75 Standard Deviation= 14 86-72 A-grade (0 students) 71-57 B-grade (6 students) 56-42 C-grade (6 students) 41-27 D-grade (4 students) 26-12 F-grade (1 student) Dr. Clincy Lecture