VDD VDD VDD M2 M2 Iref vo+ vo- CL CL M1 M1 VoQ Voc vin- vin+ – + 2*M1.

Slides:



Advertisements
Similar presentations
Operational Amplifier Stability
Advertisements

Design Review Yuan Ji Curtis Mayberry Two Stage fully differential opamp with Common Mode Feedback.
The Operational Amplifiers Dr. Farahmand. Opamps Properties IdealPractical ArchitectureCircuits Open Loop Parameters Modes of operation Frequency Response.
Bias Voltage Generation. Use Cascode to Increase output Resistance Rout is approximately g m3 r o3 r o2 L1=L2, but L3 need not equal to L2. Design Criteria:
Design with Root Locus Lecture 9.
Solving Op Amp Stability Issues Part 4
Chapter 10: Frequency Response Techniques 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 10 Frequency Response Techniques.
Chapter 5 – The Performance of Feedback Control Systems
Phase Difference = Phase Difference = 0.05.
Transient & Steady State Response Analysis
Lecture 9: Compensator Design in Frequency Domain.
Chapter 8 Performance of P-only, PI and PID Controllers.
MESB374 System Modeling and Analysis Forced Response
LDO Regulator John O’Hollaren. StandardQuasi-LDOLDO High Dropout Stability not a problem Medium Dropout Stability a concern Low Dropout Stability is a.
2-1 (a),(b) (pp.50) Problem: Prove that the systems shown in Fig. (a) and Fig. (b) are similar.(that is, the format of differential equation is similar).
INC341 Design with Root Locus
INC 341PT & BP INC341 Frequency Response Method (continue) Lecture 12.
What causes amplifier stability issues???
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design –Find an architecture already available and adapt it to present.
Chapter 6: Frequency Domain Anaysis
Lec 6. Second Order Systems
Stability – 1 TI Precision Labs – Op Amps
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Lecture 27a: Problem Session.
Control Theory Bode Stability Criterion. Other view on stability of CL Where the PHASE of the open loop TF equals -180°(+/-n.360°), we have positive feedback.
2. CMOS Op-amp설계 (1).
SKEE 3143 Control Systems Design Chapter 2 – PID Controllers Design
Learning and remembering.
1 of 75 Capacitive Loads on Gamma Buffer Outputs Analysis Techniques and Solutions Tim Green, Linear Apps Manager Texas Instruments Inc, Tucson, Arizona.
PLL Sub System4 PLL Loop Filter parameters: Loop Type and Order
Automatic Control Theory CSE 322
ECE 1270: Introduction to Electric Circuits
ECE 3302 Fundamentals of Electrical Engineering
Nyguist criterion Assist. Professor. Dr. Mohammed Abdulrazzaq.
Lecture 20: Root Locus for Design

VDD M3 M1 Vbb Vin CL Rb Vo VDD Vo Vb3
Fully differential op amps
vs vb cc VDD M9 M12 M11 Iref M1 M2 vo vin- vin+= voQ = vo CL M3 M4 M13
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin

A general method for TF It’s systematic Uses Mason’s formula
Basic BJT Small-Signal Model
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M4 M3 M4 M13 Rbp vo+ CL vo-
cc cc vbp vbp vbn VDD VDD VDD VDD VDD M16 M14 M3 M4 M13 Rbp vo+ CL vo-
For a differential amplifer: vin+=vic+vid/2, vin-=vic-vid/2
vs vin- vin+ vbp vbn vbn vbb vbb VDD VDD M9 M12 M1 M2 v- v+ Iref M3 M4
Last time Reviewed 4 devices in CMOS Transistors: main device
Miller equivalent circuit
Common mode feedback for fully differential amplifiers
Feedback: Principles & Analysis
Operational Amplifier (Op-Amp)-μA741
Types of Amplifiers Common source, input pairs, are transconductance
VDD M2 M1 Vbb Vin CL RL Vo VDD Vo Vb2
Common mode feedback for fully differential amplifiers
Differential Amplifier
Frequency Response Techniques
CBE / MET Feb 12.
CBE 491 / Sep 12.
vs vb cc VDD VDD VDD M9 M12 M11 vo Iref M1 M2 vin vin+= voQ CL vf=vin
Differential Amplifier
VDD Vin+ CL Vin- Vb3 folded cascode amp Vb2 Vb1 Vb4 Vb5.
A general method for TF It’s systematic Uses Mason’s formula
VDD VDD VDD M2 M2 Iref vo+ vo- CL CL M1 M1 VoQ Voc vin- vin+ – + 2*M1.
Part 1 Table: current, VBE, Vin vs. Vout Sketch Error estimate Vout1
CBE / MET Feb 12.
Second-Order Systems Chapter 5 Standard form:
Frequency Response Techniques
The Design of Feedback Control Systems
Chapter 5 – The Performance of Feedback Control Systems
Exercise 1 For the unit step response shown in the following figure, find the transfer function of the system. Also find rise time and settling time. Solution.
Presentation transcript:

VDD VDD VDD M2 M2 Iref vo+ vo- CL CL M1 M1 VoQ Voc vin- vin+ – + 2*M1

VDD VDD VDD M2 M2 Iref vo+ vo- CL CL M1 M1 VoQ Voc vin- vin+ =VoQ 2*M1 – + 2*M1

VDD VDD VDD M4 M4 M3 M3 vo+ vo- CL CL M2 M2 10 M1 M1 VoQ Voc vin- vin+ – + 2*M1

VDD VDD VDD M4 M4 M3 M3 vo+ vo- VDD CL CL M2 M2 Iref Vb2 Vb2 M1 M1 VoQ Voc vin- vin+ =VoQ Vs – + Vs 2*M1

Self biasing VDD VDD M4 M4 VDD M3 M3 Vb2 VDD vo CL M2 M2 Vs Vb2 M1 M1 vin+ vin- Vs

VDD VDD VDD M2 vs Iref vo vin- = vo vin+= voQ CL vb vs vb cc M1 vin2

- + + -

Buffer: b=1 Resistive feedback: b=R1/(R1+R2)

Remember: phase margin is defined on the loop TF

Under damped Critically dampled Over damped For the same resources, under damped system is faster and therefore is desired.

Overshoot = (peak – final)/final *100% For under damped system that does not have too much overshoot: PM in deg + O.S.  70. For example: 55 deg PM will have about 15% O.S. Damping ratio z  PM / 100 Settling time  - ln(tolerance)/(wtz)