Department of Chemistry, University of Wisconsin, Madison

Slides:



Advertisements
Similar presentations
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Advertisements

Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
60th OSU International Symposium on Molecular Spectroscopy TF03 The millimeter-wave rotational spectrum of lactic acid Zbigniew Kisiel, Ewa Białkowska-Jaworska,
65th OSU International Symposium on Molecular Spectroscopy RH14.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
1 Fourier transform microwave and infrared study of silacyclobutane Cody van Dijk, Samantha van Nest, Ziqiu Chen and Jennifer van Wijngaarden Department.
Fitting the high-resolution spectroscopic data for NCNCS Zbigniew Kisiel, a Brenda P. Winnewisser, b Manfred Winnewisser, b Frank C. De Lucia, b Dennis.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
The rotational spectrum of chlorine nitrate (ClONO 2 ): 6 and the 5 / 6 9 dyad Zbigniew Kisiel, Ewa Białkowska-Jaworska Institute of Physics, Polish Academy.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
20 June st International Symposium on Molecular SpectroscopyPetkie – TG03-p1 The Millimeter and Submillimeter-wave Spectrum of the , 6 1.
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
June 21, 2012 Submillimeter Spectrum of Chloromethane: Analysis of the V 3 =1 Excited State Presented by: Alissa Fisher Auburn University and U.S. Army.
Analysis of interactions between excited vibrational states in the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics,
ROTATIONAL ENERGIES AND SPECTRA: . LINEAR MOLECULE SPECTRA:  Employing the last equation twice  ΔE= E J+1 – E J = hB(J+1)(J=2) – hBJ(J+1)  Or: ΔE.
HIGH RESOLUTION LASER SPECTROSCOPY OF IRIDIUM MONOFLUORIDE AND IRIDIUM MONOCHLORIDE A.G. ADAM, L. E. DOWNIE, S. J. FORAN, A. D. GRANGER, D. FORTHOMME,
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
THz Spectroscopy of 1d-ethane: Assignment of v 18 ADAM M. DALY, BRIAN J. DROUIN, LINDA BROWN Jet Propulsion Laboratory, California Institute of Technology,
(Toho Univ. a, Univ. Toyama b ) Chiho Fujita a, Hiroyuki Ozeki a, and Kaori Kobayashi b 2015 Jun 22ndInternational Symposium on Molecular Spectroscopy,
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
Chemistry 213 Practical Spectroscopy
Jet-cooled infrared laser spectroscopy in the umbrella 2 vibration region of NH3: improving the potential energy surface model of the NH3-Ar van der Waals.
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
Department of Chemistry, University of Wisconsin, Madison
High resolution far-IR spectroscopy of HFC-134a at cold temperatures
63rd OSU International Symposium on Molecular Spectroscopy FC01
International Symposium on Molecular Spectroscopy
Jacob T. Stewart and Bradley M
Millimeter-wave spectroscopy of formyl azide (HC(O)N3)
A Green Bank Telescope Search for ortho-benzyne (o-C6H4) in CRL 618
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
The lowest vibrational states of urea from the rotational spectrum
ADINA INSTITUTE OF SCIENCE AND TECHNOLOGY
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Vibrational energies for acrylonitrile from
Far Infrared Spectroscopy of Anti-Vinyl Alcohol
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Millimeter-Wave Spectrum of Pyrimidine
Tie-Dyed McMahon Group Members
Millimeter-Wave Spectroscopy of Phenyl Isocyanate
62nd OSU International Symposium on Molecular Spectroscopy WG10
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Department of Chemistry, University of Wisconsin, Madison Millimeter-wave spectroscopy and global analysis of the lowest eight vibrational states of deuterated hydrazoic acid (DN3) International Symposium of Molecular Spectroscopy, Urbana-Champaign, Illinois June 26, 2015 Brent K. Amberger, R. Claude Woods, Brian J. Esselman, Robert J. McMahon Department of Chemistry, University of Wisconsin, Madison

Considerations for DN3 vs. HN3 DN3 compared to HN3: More b-type lines in our range Slower intensity drop off in R line intensity with K Generally smaller perturbation effects Published IR data for 2ν6 as well as ground, ν5, ν6, ν4, and ν3 Re-ordering of vibrational energy levels HN3 A ~611 GHz DN3 A ~345 GHz Goal to obtain a simultaneous MMW/ FTIR fit for the 8 lowest vibrational states of DN3 To be successful we need correct assignments and decent starting values for as many spectroscopic constants as possible

Excited Vibrational States HN3 DN3 1266.6 cm-1 ν3 ~1213 cm-1 2ν6 1197.39 cm-1 ν3 1147.4 cm-1 ν4 1162.42 cm-1 2ν6 ~1143.5 cm-1 ν5+ ν6 ~1074 cm-1 ~1082 cm-1 ν5+ ν6 2ν5 ~991 cm-1 2ν5 ν4 954.77 cm-1 606.36 cm-1 ν6 586.49 cm-1 ν6 537.25 cm-1 ν5 495.74 cm-1 ν5 0 cm-1 Ground 0 cm-1 Ground

Predicted Spectra for HN3 and DN3 Our Range DN3

DN3 Ground State R-Branch K=1 K=0 K=1 J= 14  13 Spectrum predicted from a fit including K=0 through K=7 K=2 K=3 K=4 K=5 K=8 K=11 K=10 K=9 K=6 K=7 K=1 K=0 K=1 J= 14  13 K=2 Assignments K=3 K=4 K=5 K=8 K=11 K=10 K=9 K=6 K=7

The Spectrum and the Excited states ground ν6 ν5 ν4 ν3 2ν5 2ν6 ν5+ ν6

Extremely Useful Prior IR Works The pure rotational absorption spectrum DN3 in the far-infrared region Bendtsen, J. and F. M. Nicolaisen, Journal of Molecular Spectroscopy 1987, 125, 14-23. FTIR Spectra and simultaneous analysis of ν5 ν6 and ground Bendtsen, J.; Hegelund, F.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1988, 128, 309-320. FTIR spectra of ν4 and 2ν6 Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1991, 145, 123-129. FTIR spectra of ν2 and ν3 Hansen, C. S.; Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1996, 175, 239-245.

Loomis-Wood Plots Developed a list of ~100 series likely to be a-type R-branches. Attributed K- states and vibrational states to the series using all available means. Ran low on unassigned series and states at the same time! Rigorous checking of assignments.

Picking Series out of Loomis-Wood Plots This series of K=8 cannot cleanly be included in a single state for the ground state because of perturbation with ν5 K=7 This single state fit for the ground state is still very useful in finding lines for K=8 however.

Linear Plots and Assignment Confirmation Make these plots for all series believed to belong to R-Branches. Slope and intercept of these linear plots proved useful in assigning each series to a state and a K value. Slopes and intercepts were also useful in obtaining initial values for spectroscopic constants. (Nominal Frequency Range) (Using Spurious Harmonic in AMC)

Intercepts of K-series plots B+C of our fit = 22336.32 B+C of our fit = 22356.66 Slope = -2ΔJK

Fermi Resonances between 2ν6 & ν3 and between 2ν5 & ν4 k663 = -76.85 k554 = 13.38 Cubic Force Constants CCSD(T)/ANO2

Using (Frequency / Jupper) vs Jupper2 plots for all K states Intercept = -0.0152 MHz Intercept = -0.0150 MHz -4ΔJ= -0.0168 from SPFIT -4ΔJ= -0.0161 from SPFIT Intercept = -0.0157 MHz -4ΔJ= -0.0156 from SPFIT

A 3-State Fit MMW and FTIR data: Ground, ν5, and ν6 A (MHz) 342150.(38) B (MHz) 11385.12(24) C (MHz) 10971.54(24) ΔJ (kHz) 3.890(30) ΔJK (kHz) -10.0(46) ΔK (kHz) -65522.(254) δJ (kHz) 0.1767(15) δK (kHz) 85.(38) ΦJ (Hz) -0.171(17) ΦJK (Hz) -11.2(21) ΦKJ (Hz) -3706.(198) ΦK (Hz) 963610.(14269) LKKJ 179374.(3357) LK -20609300.(159482) E (MHz) 14862352.(47) N lines MM 210 N lines IR 349 σ (MHz) 2.5 σ IR (cm-1) .037 ν6 A (MHz) 339895.(38) B (MHz) 11349.91(24) C (MHz) 10986.41(24) ΔJ (kHz) 4.189(50) ΔJK (kHz) 876.3(35) ΔK (kHz) 239007.(738) δJ (kHz) 0.279(13) δK (kHz) -78.(47) ΦJ (Hz) 0.167(25) ΦJK (Hz) -7.1(24) ΦKJ (Hz) 473.(181) ΦK (Hz) -446610.(24901) LKKJ -151257.(3273) LK 10473100.(218238) E (MHz) 17583158.(56) N lines MM 141 N lines IR 507 σ (MHz) 2.3 σ IR (cm-1) .024 Perturbation Constants Ga (MHz) 599174.(87) Fa (MHz) 6.93(37) Gb (MHz) -946.(48) W05 616.(10) Ground State A (MHz) 344747.34(30) B (MHz) 11350.8535(97) C (MHz) 10964.916(10) ΔJ (kHz) 4.305(11) ΔJK (kHz) 397.0(18) ΔK (kHz) 92837.(63) δJ (kHz) 0.17260(32) δK (kHz) 301.8(13) ΦJ (Hz) 0.0034(34) ΦJK (Hz) 1.45(24) ΦKJ (Hz) -104.(13) ΦK (Hz) 112169.(1566) LKKJ -2860.(179) LK -151700.(9792) E (MHz) N lines MM 304 N lines IR 620 σ (MHz) 0.47MHz σ IR (cm-1) 0.0036 14 parameters per state X 3 4 Perturbation terms vibrational energies allowed to vary 655 MMW transitions 1476 IR transitions σMMW = 1.83 MHz σIR = 0.0229 cm-1

DN3 Energy Levels and Perturbations Fermi Resonance 1197.39 cm-1 ν3 1162.42 cm-1 2ν6 Gc (Coriolis) Ga, Fa, Gb (Coriolis) ~1082 cm-1 ν5+ ν6 Ga, Fa, Gb (Coriolis) ~991 cm-1 2ν5 ν4 Fermi Resonance 954.77 cm-1 Centrifugal Distortion (W05) Ga, Fa, Gb (Coriolis) 586.49 cm-1 ν6 Ga, Fa, Gb (Coriolis) 495.74 cm-1 ν5 W05 (centrifugal distortion) 0 cm-1 Ground

Perturbation Terms for Three-State Fit HN3 CCSD(T)/ANO2 Present Work Hegelund & Bendtsen 1987 Ga56 (cm-1) 36.77 38.033(12) [38.06] Gb56 (cm-1) -0.0389 0.06378(43) 0.06252(13) W05 (cm-1) 0.0345(14) 0.04261(7) DN3 CCSD(T)/ANO2 Present Work Bendtsen et al 1988 Ga56 (cm-1) 20.74 19.9863(29) [18.86] Gb56 (cm-1) -0.0368 -0.0316(16) 0.071(6) W05 (cm-1) 0.0206(3) 0.0312(6)

Analysis of Splittings in K=1 K=2 and K=3

What do K=1, K=2, and K=3 Splittings tell us? From the Wang Formula: 𝐸 1 + − 𝐸 1 − 𝐽 𝑈𝑝 = 𝐵−𝐶 +ℎ𝑖𝑔ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 K=1 Splittings 𝐸 2 + − 𝐸 2 − ( 𝐽 𝑈𝑝 −1) 𝐽 𝑈𝑝 ( 𝐽 𝑈𝑝 +1) = 1 8 (𝐵−𝐶) 2 𝐴− 𝐵+𝐶 2 +ℎ𝑖𝑔ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 K=2 Splittings Slopes of Splitting Curves K=1 K=2 K=3 ν5 Without Ga 414.62 0.0698 2.16*10-6 With Ga 385.30 0.0913 3.68*10-6 ν6 363.22 0.0462 1.09 *10-6 336.29 0.0312 5.65 *10-7

Complete K state energy plot Ground state Slope = 333548.85 A-(B+C)/2= 333589.46 Quadratic term = -90.29 MHz -ΔK = -92.84 MHz Cubic term = 0.0767 MHz ΦK = 0.1122

Analyzing the Difference between ν5 & ν6 K Energies therefore 1 2 𝑠𝑙𝑜𝑝𝑒 ≅ Ga Ga from slope = 19.88 cm-1 Ga from our 3-state fit = 19.98 cm-1 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝐸 0 𝑣6 - 𝐸 0 𝑣5 𝐸 0 𝑣6 - 𝐸 0 𝑣5 From intercept = 90.78 cm-1 𝐸 0 𝑣6 - 𝐸 0 𝑣5 From literature = 90.75 cm-1

Checking Assignments DN3 2ν6 We also found b-type lines for all but 2ν5 and ν5+ν6 2ν6 313986.3528 MHz 11 1 11 243508.2152 12 0 12 267676.3 (extrapolated from 4 K=0 transitions) 10 1 10 338153.8206 11 0 11 267675.7460 + 313986.3528 - 243508.2009 - 338153.8206 = 0.616MHz

Summary Accomplished so far: Assigned a-type R branches for 8 lowest energy vibrational states Assigned b-type lines for 6 of these states Achieved a reasonable 3-state fit of combined MMW/ FTIR data Found ways to extract some key spectroscopic constants from the data Elusive long-term goal: 8-state fit!

Thanks for Listening! The Research Group Professor Bob McMahon Professor Claude Woods Dr. Brian Esselman Brent Amberger Ben Haenni Zachary Heim Steph Knezz Matisha Kirkconnell Vanessa Orr Cara Schwarz Nick Walters Maria Zdanovskaia Advertisement also from our group: FE06 Nick Walters Millimeter- wave spectroscopy of formyl azide. Special thanks: John Stanton Mark Wendt