Electrochemistry / Redox

Slides:



Advertisements
Similar presentations
Electrochemistry Chapter 20.
Advertisements

Topic: Electrochemical Cells Do Now: 5 color pencils.
Cells and Voltage.
Cells and Voltage.
Galvanic Cells What will happen if a piece of Zn metal is immersed in a CuSO 4 solution? A spontaneous redox reaction occurs: Zn (s) + Cu 2 + (aq) Zn 2.
Galvanic Cell.
Chapter 18 Electrochemistry. Redox Reaction Elements change oxidation number  e.g., single displacement, and combustion, some synthesis and decomposition.
Lecture 233/12/06. What is a REDOX reaction? OXIDATION: Ca(s)  Ca 2+ REDUCTION: 2H +  H 2 (g) OIL RIG Combined (net): REDOX REACTIONS Oxidation-Reduction.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Electrochemistry Use of spontaneous chemical reactions to produce electricity; use of electricity to drive non-spontaneous reactions. Zn(s) + Cu 2+ (aq)
Lecture 11: Electrochemistry Introduction
Lecture 233/30/05. Redox example: respiration/combustion Balance redox reaction for glucose (C 6 H 12 O 6 ) respiration (same as combustion reaction)
Lecture 243/14/06. Balancing Redox reactions H 2 C 2 O 4 (aq) + MnO 4 -  Mn 2+ + CO 2 (g) oxalic acid permanganate 1. Break into half-reactions 2. Balance.
Electrochemistry Chapter 11 Web-site:
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18.
Electrochemistry Chapter 19.
Section 18.1 Electron Transfer Reactions 1.To learn about metal-nonmetal oxidation–reduction reactions 2.To learn to assign oxidation states Objectives.
ELECTROCHEMICAL CELLS. TASK Sequence these elements starting from the most reactive to the least reactive: Na, Pt, Au, C, H, Sn, Pb, Al, C, Mg, Li, Ca,
Electrochemistry Lesson 8 Electrochemical Cells. Electrochemical cells are Batteries.
GALVANIC AND ELECTROLYTIC CELLS
14.2a Voltaic Cells Basic Function. Voltaic Cell Basics Electrodes and electrolytes chemically react to form ions that move in or out of solution. Anode.
Electrochemical Cells - producing an electric current with a redox reaction.
Chapter 18 Notes1 Chapter 18 Electrochemistry 1. review of terms; balancing redox equations 2. galvanic cell notation, relationships 3. standard reduction.
Electrochemical Cells (Galvanic, Voltaic, Electric)
In a galvanic cell, the electrode that acts as a source of electrons to the solution is called the ___________; chemical change that occurs at this electrode.
Electrochemistry - Section 1 Voltaic Cells
Electrochemistry ZnSO4(aq) CuSO4(aq) Cu Zn Zn
Unit 11 Electrochemistry. What is electrochemistry? The study of the relationship between chemical change and electrical work. ◦ Investigated using redox.
Chapter 20 Electrochemistry West Valley High School General Chemistry Mr. Mata.
Electrochemistry Ch.19 & 20 Using chemical reactions to produce electricity.
Voltaic Cells/Galvanic Cells and Batteries. Background Information Electricity is the movement of electrons, and batteries are an important source of.
BATTERIES AND CELLS.
Electrochemistry Introduction Voltaic Cells. Electrochemical Cell  Electrochemical device with 2 half-cells with electrodes and solutions  Electrode—metal.
1 REVERSIBLE ELECTROCHEMISTRY 1. Voltaic Or Galvanic Cells Voltaic or Galvanic cells are electrochemical cells in which spontaneous oxidation- reduction.
Redox Review. Create a Venn Diagram for Voltaic and Electrolytic cells.
Electrochemistry f.
Voltaic Cells Notes A.) Spontaneous reaction 1.) In Voltaic Cells (Batteries), when the circuit is closed (turned on) electrons will move from anode.
Electro-chemistry: Batteries and plating Electrochemistry: The study of the interchange of chemical and electrical energy Oxidation is the loss of electrons.
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
Electrochemistry Lesson 2
Electrochemistry Dr. Susan Lagrone.
Oxidation-Reduction Reactions
Chapter 20 Electrochemistry
Cell Potential.
Electrochemistry RedOx: Part Deux.
Voltaic Cells Aim: To identify the components and explain the functions of an electrochemical (voltaic) cell.
Electrochemistry RedOx: Part Deux.
14.2a Voltaic Cells Basic Function.
Electrochemistry.
Chapter 15 Oxidation and Reduction
Electrolytic Cells Aim: Write half reactions for electrolysis of a salt and electroplating.
Harnessing the changes in oxidation and reduction
Electrochemistry- Balancing Redox Equations
Electrochemistry.
Redox Reactions battery to start car prevent corrosion
Standard Reduction (Half-Cell) Potentials
Electrochemistry i.e. This is the End!.
Electrochemistry Chapter 20.
Electrochemistry Part II: The Galvanic Cell
Electrochemical Cells (Batteries)
AP Chem Get HW checked Work on oxidation # review
Chapter 21: Electrochemistry
AP Chem Get HW checked Take out laptops and go to bit.ly/GalCell
Electrochemistry.
from a battery or other external energy source
Galvanic Cells (Voltaic Cells)
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
Electrochemistry Kenneth E. Schnobrich.
A. Oxidation-Reduction Reactions
What is a redox reaction?
Presentation transcript:

Electrochemistry / Redox Day 3: Utilizing Redox Reactions

Balancing Practice Balance the following redox reaction: Au+3(aq) + I-1(aq)  Au(s) + I2(s) Balance the following redox reaction, which takes place in an acidic solution: MnO4- + S2O3-2  Mn+2 + S4O6-2 Balance the following redox reaction, which takes place in a basic solution: Zn + NO3-  Zn(OH)4-2 + NH3

Simple Voltaic Cells (Galvanic Cells) Cu + 2Ag+  2Ag + Cu2+ voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … Salt bridge e- Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … Salt bridge e- Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … e- Salt bridge e- Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- If the reaction is spontaneous … e- Salt bridge e- Na+ NO3- electrode electrode Mass of electrode decreases, [Cu2+] increases Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- If the reaction is spontaneous … e- Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- e- If the reaction is spontaneous … Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- e- If the reaction is spontaneous … Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- e- If the reaction is spontaneous … Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- e- If the reaction is spontaneous … Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- e- If the reaction is spontaneous … Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- e- If the reaction is spontaneous … Salt bridge Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag e- e- If the reaction is spontaneous … Salt bridge e- Na+ NO3- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … Salt bridge e- Na+ NO3- e- e- electrode electrode Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … Salt bridge Na+ NO3- e- e- electrode electrode e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … Salt bridge Na+ NO3- e- electrode electrode e- e- Mass of electrode increases, [Ag+] decreases Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag If the reaction is spontaneous … Salt bridge Na+ NO3- e- electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge NO3- Na+ e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge NO3- Na+ e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + voltmeter Cu  Cu2+ + 2e- wire 2e- + 2Ag+  2Ag negative charge If the reaction is spontaneous … Salt bridge Na+ NO3- e- The salt bridge allows for a complete circuit so the electrons can move electrode electrode e- e- Cu metal Ag metal Cu(NO3)2 soln AgNO3 soln Half cell Half cell

Simple Voltaic Cells Important Points: Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + 2Ag+  2Ag Important Points: 1. The electrode where the oxidation takes place is called the ANODE (negative electrode) 2. The electrode where the reduction takes place is called the CATHODE (positive electrode) 3. Electrons always flow from the anode to the cathode in a voltaic cell.

Simple Voltaic Cells Important Points: Cu + 2Ag+  2Ag + Cu2+ Cu  Cu2+ + 2e- 2e- + 2Ag+  2Ag Important Points: 4. Notation for electrochemical cells: Cu(s) │Cu2+ │ │ Ag+ │ Ag(s) anode Salt bridge cathode

Voltaic Cells with Inert Electrodes H2 + 2Fe+3  2Fe+2 + 2H+ H2  2H+ + 2e- 2e- + 2Fe+3  2Fe+2 When the reactants and products CAN NOT be used as electrode materials, other, chemically inert substances must be used Pt Fe+2 H+ H+ Fe+3 - Graphite, mercury, platinum, gold, etc.

Voltaic Cells with Inert Electrodes H2 + 2Fe+3  2Fe+2 + 2H+ H2  2H+ + 2e- 2e- + 2Fe+3  2Fe+2 Write the shorthand notation for the cell shown to the right. Pt H2 │H+ │ │ Fe+3 │ Fe+2 Fe+2 Fe+3

Voltaic Cells with Inert Electrodes Suggested homework for this weekend: 1-2 hours of AP Test Prep Practice several redox balancing problems (regular, acidic and basic solution problems)

Alkaline Batteries e- Zn(s) + 2OH-1 ZnO + H2O(l) + 2e- (salt bridge) 2MnO2(s) + H2O(l) +2e- Mn2O3 + 2OH- e-

Simple Voltaic Cells Describe how to set up a voltaic cell using the following reaction: Fe + Cu2+  Cu + Fe2+ Consider: 1. Which electrode is anode? 2. Which is cathode? 3. Direction of e- flow? 4. Direction of ion flow? 5. Which half reaction occurs where? 6. Which electrode is increasing in mass? 7. How are the [ion] changing? 8. What notation would describe this cell?