Regression Analysis: Estimating Relationships Regression Analysis is a study of relationship between a set of independent variables and the dependent variable.

Slides:



Advertisements
Similar presentations
Regression: Introduction
Advertisements

Chapter 4: Basic Estimation Techniques
Simple Linear Regression Analysis
Multiple Regression and Model Building
Chapter 12 Simple Linear Regression
Forecasting Using the Simple Linear Regression Model and Correlation
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 12 l Multiple Regression: Predicting One Factor from Several Others.
Correlation and regression Dr. Ghada Abo-Zaid
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Regression Analysis Module 3. Regression Regression is the attempt to explain the variation in a dependent variable using the variation in independent.
Probabilistic & Statistical Techniques Eng. Tamer Eshtawi First Semester Eng. Tamer Eshtawi First Semester
Chapter 12 Simple Linear Regression
LECTURE 3 Introduction to Linear Regression and Correlation Analysis
Simple Linear Regression
Statistics for Managers Using Microsoft® Excel 5th Edition
Correlation and Regression Analysis
The Simple Regression Model
Gordon Stringer, UCCS1 Regression Analysis Gordon Stringer.
Chapter Topics Types of Regression Models
1 4. Multiple Regression I ECON 251 Research Methods.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Lecture 17 Interaction Plots Simple Linear Regression (Chapter ) Homework 4 due Friday. JMP instructions for question are actually for.
Correlation 1. Correlation - degree to which variables are associated or covary. (Changes in the value of one tends to be associated with changes in the.
Simple Linear Regression Analysis
Simple Linear Regression. Introduction In Chapters 17 to 19, we examine the relationship between interval variables via a mathematical equation. The motivation.
Objectives of Multiple Regression
Linear Regression.
Regression and Correlation Methods Judy Zhong Ph.D.
Introduction to Linear Regression and Correlation Analysis
1 Least squares procedure Inference for least squares lines Simple Linear Regression.
1 FORECASTING Regression Analysis Aslı Sencer Graduate Program in Business Information Systems.
L 1 Chapter 12 Correlational Designs EDUC 640 Dr. William M. Bauer.
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc. Chap 12-1 Correlation and Regression.
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Multiple Regression and Model Building Chapter 15 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Basic Concepts of Correlation. Definition A correlation exists between two variables when the values of one are somehow associated with the values of.
Chapter 4 Linear Regression 1. Introduction Managerial decisions are often based on the relationship between two or more variables. For example, after.
Chapter 13 Multiple Regression
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 13-1 Introduction to Regression Analysis Regression analysis is used.
Stat 112 Notes 9 Today: –Multicollinearity (Chapter 4.6) –Multiple regression and causal inference.
Scatter Diagrams scatter plot scatter diagram A scatter plot is a graph that may be used to represent the relationship between two variables. Also referred.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 14-1 Chapter 14 Multiple Regression Model Building Statistics for Managers.
Chapter 8: Simple Linear Regression Yang Zhenlin.
© 2001 Prentice-Hall, Inc.Chap 13-1 BA 201 Lecture 18 Introduction to Simple Linear Regression (Data)Data.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
1 Simple Linear Regression and Correlation Least Squares Method The Model Estimating the Coefficients EXAMPLE 1: USED CAR SALES.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 14-1 Chapter 14 Multiple Regression Model Building Statistics for Managers.
BPA CSUB Prof. Yong Choi. Midwest Distribution 1. Create scatter plot Find out whether there is a linear relationship pattern or not Easy and simple using.
BUSINESS MATHEMATICS & STATISTICS. Module 6 Correlation ( Lecture 28-29) Line Fitting ( Lectures 30-31) Time Series and Exponential Smoothing ( Lectures.
Introduction. We want to see if there is any relationship between the results on exams and the amount of hours used for studies. Person ABCDEFGHIJ Hours/
Introduction Many problems in Engineering, Management, Health Sciences and other Sciences involve exploring the relationships between two or more variables.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
The simple linear regression model and parameter estimation
Regression Analysis: Estimating Relationships
Chapter 4 Basic Estimation Techniques
Linear Regression.
Regression Analysis Module 3.
Correlation and Simple Linear Regression
Basic Estimation Techniques
Linear Regression and Correlation Analysis
The Least-Squares Regression Line
Econ 3790: Business and Economics Statistics
Regression Analysis: Estimating Relationships
Correlation and Simple Linear Regression
Regression Analysis Week 4.
Correlation and Simple Linear Regression
Simple Linear Regression and Correlation
BEC 30325: MANAGERIAL ECONOMICS
Correlation and Simple Linear Regression
Correlation and Simple Linear Regression
Presentation transcript:

Regression Analysis: Estimating Relationships Regression Analysis is a study of relationship between a set of independent variables and the dependent variable. Independent variables are characteristics that can be measured directly (example the area of a house). These variables are also caled predictor variables (used to predict the dependent variable) or explanatory variables (used to explain the behavior of the dependent variable). Dependent variable is a characteristic whose value depends on the values of independent variables. Y = B0 + B1*X1 + B2*X2 + …… +/- E Dependent VariableIndependent VariableRandom Error Constant termCoefficients

Purpose of Regression Analysis Now Future/UnknownPast / Experience / Known Explanation :Use regression analysis to develop a mathematical model to explain the variance in the dependent variable based on values of independent variables. Prediction : If the regression model adequately explains the dependent variable, use the model to predict values of the dependent variable. time Explain Selling Price of a house (dependent) based on its characteristics (independents). If the model is valid, use it for prediction. Develop Regression Model using known data (sample) Selling Price = 40, (Sq.ft) + 20,000(#Baths) If the above model is reliable and valid, Use this model to predict the Selling Price of any house based on its area (Sq.ft.) and the number of bathrooms (#Baths) The constant term (40,000) is the fixed price of the house. This is not dependent on the values of the variables considered. Can be interpreted as the price of the lot and transaction costs. The coefficient of Sq.ft. (100) is the change in Selling Price for an additional Square Foot. Can be interpreted as Price per Sq.Foot.

Procedure for Building Regression Models Define Objectives Select Variables Estimate Model Test Model Implement and Use Monitor Performance Define/Clarify Purpose. Identify and describe the measurement of the dependent variable. Identify possible independent variables (predictors – should make sense). Use scatter plots and correlations for selection. Estimate Regression Coefficients (using least squares method). Test to see if all coefficients are significant (reliability). Establish validity (are relationships as expected, do predictions match actuals). Implement the model in Decision Support System. Incorporate error in predictions. Outline limitations/constraints of the model. Compare predictions with actual values. Modify/Refine/Expand model if necessary. IT is about continuous improvement.

Selecting Independent Variables: Scatter Plots Scatter Plots are used to visualize the relationship between any two variables. For regression analysis, we are looking for strong linear relationship between the independent and dependent variable. Overhead = M_Hrs Runs Y-Intercept (Constant): Value of the dependent variable irrespective of the value(s) of the independent variable(s). X-Coefficient (Slope): Change in dependent variable per unit change in independent variable. R-Squared: Proportion of variance in dependent variable explained by independent variable(s).

Selecting Independent Variables: Correlation Analysis Correlation Coefficients are used to measure the linear relationship between any two variables. For regression analysis, we are looking for strong linear relationship between the independent and dependent variable, and low correlations among independent variables. Correlation of MachHrs with Overhead (should be high) Correlation of MachHrs with ProdRuns (should be low) Correlation of ProdRuns with Overhead (should be high) Multicollinearity exists when two independent variables are highly correlated (redundancy).

Simple Linear Regression Linear regression function One dependent and one independent variables Mathematical form : Y = + X + and are parameters (unknown constants) and their values are estimated from a known sample of X and corresponding Y. Y-pred Y-actual * X B0 = y -intercept B1 = slope Estimated Model: Y-Pred = b + b 1 X b 0 and b 1 are estimates (based on a sample) of b 0 and b 1 which are parameters (based on population) Estimation of b 0 and b 1 (coefficients) is done by the Least Squares Method. This method selects the line that has the smallest squared error

Example of Simple Linear Regression: Defining Objective(s) Define Objectives Pharmex is a chain of drugstores that operates around the country. To see how effective their advertising and other promotional activities are, the company has collected data from 50 randomly selected metropolitan regions. In each region it has compared its own promotional expenditures and sales to those of the leading competitor in the region over the past year. So, Pharmexs objective is to model the relationship between Promotion expenditures and Sales Since Pharmex is interested in improving its sales, relative to its largest competitor, the dependent (outcome) variable for this situation is Sales: Pharmexs sales as a percentage of those of the leading competitor. This is the dependent (or predicted) variable.

Example of SLR: Select Independent Variable Variable Selection n The company expects that there is a positive relationship between the Relative measures of Sales and Promotion Expenditures, so that regions with relatively more expenditures have relatively more sales. Promote: Pharmexs promotional expenditures as a percentage of those of the leading competitor. This is the independent variable (or predictor variable), one which can be controlled by Pharmex. Description of Variables: List each variable, how measured, and expected relationship with dependent variable. In this section report results of Correlation Analyses, Scatter Plots, etc. Selection Criteria: Based in Common Sense and Experience Scatter Plots and Correlations

Data Collection Example of SLR: Collect and Organize Data Pharmex ($) Region Sales(Sp)Prom (Pp) Competitor ($) Sales(Sc)Prom (Pc) Indexes (regr. data) Sales= Sp/Sc Promote = Pp/Pc Collect all relevant Data and Organize it in a Dataset – one which can be analyzed by a solver (like Excel)

Example of SLR: Estimate Coefficients Estimate Model Regression Procedure in Excel R-Square: 45% of the variance in Sales is explained by Promote (model) Estimated Coefficients: Y- intercept (b0) = Slope (b1) = Sales- predicted = Promote P-Value: Indicates the probability of making a Type I error (the possibility that the coefficient is = 0, that is there is no relationship). If this value is greater than.05 do not use the variable as a predictor.

Example of SLR: Testing the Model Reliability and Validity: Does the model make intuitive sense? Is the model easy to understand and interpret? Are all coefficients statistically significant? (p-values less than.05) Are the signs associated with the coefficients as expected? Does the model predict values that are reasonably close to the actual values? Is the model sufficiently sound? (High R-square, low standard error, etc.)

Example of SLR: Implementing and Using the Model Develop a Spreadsheet Model (Decision Support System) Decision Variable Estimated Forecast (regression formula) What-if Pharmex spent 160K on promotions? (Sensitivity analysis) What will Pharmex have to do to achieve 20% sales more than its competitor? (goal seeking) What will happen to Pharmexs sales if its Competitors promotion can be any value between 130K and 140K? (Monte-Carlo Simulation)