Unit 1. Day 2..

Slides:



Advertisements
Similar presentations
Real Numbers and The Number Line
Advertisements

RATIONAL NUMBERS NATURAL NUMBERS {1, 2, 3,…}+ {0} = WHOLE NUMBERS {0, 1, 2, 3,…}+ NEG. WHOLE NOS. = INTEGERS {…-2, -1, 0, 1, 2,…}+ PURE FRACTIONS = RATIONAL.
2.3 Subtracting Real Numbers Objectives: Define subtraction in terms of addition. Subtract numbers with like & unlike signs. Standards Addressed: F:
A Slide Show by Mr. Mark Martin. Integer Operations Integers are all the positive and negative numbers and zero. –In set notation: {... -2, -1, 0, 1,
Lesson 2-2 Adding and Subtracting Rational Numbers.
Practice 1.2 Answers
Integers Lesson 1a: Integers Integers are whole numbers and their opposites. Negative integers are numbers less than zero. Positive integers are numbers.
1.2 ADDING AND SUBTRACTING INTEGERS I can find the sums and differences of integers by using a number line or using SSA/DSS.
Warm Up 8/13. Lesson 4: Efficiently Adding Integers and Other Rational Numbers Objectives I can interpret sums of rational numbers by describing real-world.
Write an integer for each situation. 1. stock market down 56 points
Properties of Real Numbers Algebra A Unit 1, Lesson 4.
7 th grade Mathematics: Unit 2: Lesson 1 Anna Taylor and Debra Conover Properties of Adding Rational Numbers.
P1 Review of Real Numbers and Their Properties
Properties of real numbers. Types of real numbers Whole number Integer Rational Positive numbers in whole amounts Positive and negative numbers in whole.
INTEGERS Absolute Value Numbers and the Number Line Addition Subtraction Multiplication and Division Add/Subtract Matrices.
Use with Lesson X Standard X.XX.X Common Core State Standards © Copyright National Governors Association Center for Best Practices and Council of.
Lesson 2.3 Subtracting Integers View in “Slide Show” mode.
Compare and order integers Find the absolute value of an expression Lesson 2-1 Rational Numbers and Exponents.
Warm up: Fill in Agenda. Complete the number sort on the board
Properties of Real Numbers
WARM UP The least common denominator of the fractions and is
Integers Rules of Operation.
Adding, Subtracting, Multiplying, and Dividing Integers
Lesson Identifying Opposites and Absolute Value of Rational Numbers
Adding and Subtracting Integers
Addition of Signed Numbers
+ Number Line Motivation: What is the topic?. + absolute value.
Unit 2. Day 10..
Unit 2. Day 1..
Exploring Real Numbers
(computer – Online Book)
Using Rules to Subtract Integers
Unit 1. Day 8..
Unit 1. Day 5..
Unit 1. Day 4..
Unit 1. Day 7..
1-7 Adding and Subtracting Integers
8 + (-6) = ? = ?.
Unit 2. Day 5..
Together, rational numbers and irrational numbers form this set.
You need: Pencil Agenda Scrap Paper AP log
Adding and Subtracting Real Numbers
Unit 2. Day 4..
Chapter 3 Test Review.
Unit 2. Day 5..
Unit 1. Day 2..
1 Introduction to Algebra: Integers.
OR a RATIONAL NUMBER is any number that can be written as a fraction.
Unit 2. Day 7..
Adding and Subtracting Integers
Absolute Value and Adding Integers
Evaluate the expression: 2(10−2)÷ ÷ ÷4 16÷4 =4
Lesson #17: Adding Integers
Compute with Integers.
Unit 2. Day 14..
Integers & Rational numbers
Unit 2. Day 10..
Unit 2. Day 13..
Adding Integers To add two integers with the same sign, find the sum of their absolute values. Use the sign of the two integers. To add two integers with.
Objectives Add real numbers. Subtract real numbers.
Adding Integers Chp 2.2.
Objectives Add real numbers. Subtract real numbers.
Unit 2. Day 8..
Adding and Subtracting Integers
Subtracting Integers Sec 2.3 pg
OR a RATIONAL NUMBER is any number that can be written as a fraction.
How would you explain this relationship using a mathematical model?
Chapter 2-2 Adding Integers
Adding and Subtracting Real Numbers
Mr. Johnson 7th Grade Math
Presentation transcript:

Unit 1. Day 2.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Order of Operations 7.NS.A.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers (fractions)

What is an integer? Real Irrational π, e, 2 Rational -3.24, 2/3, 6.71, -5/2, … Integers -1, -2, -3, -4, … Irrational π, e, 2 Whole Natural 1, 2, 3, 4, …

Comparing Integers Adding (combine) Integers Absolute Value

> −6 −9 Example A: Compare the integers: 1 2 3 4 5 6 7 8 9 10 11 -4 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

< −10 2 Example B: Compare the integers: 1 2 3 4 5 6 7 8 9 10 11 -4 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

Compare the integers: −2 2 Example C: −100 −1 Example D: −6 Example E:

< −2 2 Example C: Compare the integers: 1 2 3 4 5 6 7 8 9 10 11 -4 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

< −100 −1 Example D: Compare the integers: 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

> −6 Example E: Compare the integers: 1 2 3 4 5 6 7 8 9 10 11 -4 -5 > −6 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

Example F: Order the integers from least to greatest. 9 9, −6, −13, −7, 1 −6 −13 −7 1

Comparing Integers Adding (combine) Integers Absolute Value

Commercial Break Let’s Learn How to Read

3+5 + 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑓𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

−2+6 𝑡𝑤𝑜 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑠𝑖𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

−1+ −4 𝑜𝑛𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑢𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

3+−8 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑒𝑖𝑔ℎ𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

= 2 − − − − − − − − − − + + + + + + + Example G: Find −9+7 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

= 3 − − − − − − − − − − + + + + + Example H: Find −8+5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

= 3 + + + + + + + + − − − − Example I: Find 7+ −4 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

= 4 + − − − − − − − + + + + + + + + + + Example J: Find −6+10 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

= 11 − − − − − − − − − − − − Example K: Find −5+ −6 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

= 13 + + + + + + + + + + + + + + Example L: Find 7+6 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

Comparing Integers Adding (combine) Integers Absolute Value

Let’s talk about ABSOLUTE VALUE Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. Let’s talk about ABSOLUTE VALUE −2 4 −8

−2 = 2 Example M: 1 2 3 4 5 6 7 8 9 10 11 -4 -5 -6 -7 -8 -9 -1 -2 -3 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

Example N: 7 = 7 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

−6 = 6 6 = 6 −8 = 8 8 = 8 −1 = 1 1 = 1 Example O: Example P: Example Q: 8 Example R: 8 = 8 −1 = 1 Example S: 1 = 1 Example T: 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

= 4 − − − − − − − − − − − + + + + + Example U: Find −9+5 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative

= 6 + + + + + + + + + + + − − − − Example V: Find 10+ −4 1 2 3 4 5 6 7 8 9 10 11 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative