Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey

Slides:



Advertisements
Similar presentations
Gas and mm Dust emission François Boulanger et Guilaine Lagache (Institut d Astrophysique Spatiale, Orsay) Tracing diffuse ISM components in te Solar Neighborhood.
Advertisements

Rotation Curve of the Galaxy Mareki Honma and Yoshiaki Sofue The University of Tokyo, 1997 Received 1996 October 25; accepted 1997 April 10 Journal review,
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Lister Staveley-Smith – GALFA March 21, Parkes HI Surveys  HIPASS –An extragalactic survey reprocessed for Galactic science  Magellanic System.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
The nature of the dust and gas in the nucleus of NGC 1068.
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
High-Resolution Observations of the Magellanic Stream Deanna Matthews Dr Lister Staveley-Smith Professor Peter Dyson La Trobe University ATNF, CSIRO La.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Definitive Science with Band 3 adapted from the ALMA Design Reference Science Plan (
Mapping Hydrogen in the Galaxy, Galactic Halo and Local Group with the Galactic Arecibo L-Band Feed Array (GALFA) The GALFA-HI Survey starting with TOGS.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
Compact HII regions toward Methanol Maser traced sources of Massive Star Formation Adam Avison (UK ARC, JBCA) Gary Fuller + MMB Collaboration.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Molecular component in the Milky Way IRAM Summer School Lecture 2 Françoise COMBES.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
The Canadian Galactic Plane Survey Mapping the Ecology Of the Milky Way Galaxy.
Galaxy Characteristics Surface Brightness Alternative to Luminosity I(R) = Flux/area = erg/s/cm 2 /arcsec 2 I(0) – center flux I(R) = at radius R Define.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Cosmic magnetism ( KSP of the SKA) understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Galaxy Rotation: How we know AS413 10/28/2014 D. Clemens.
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
VUV Survey of 12 CO/ 13 CO in the Solar Neighborhood with the Hubble Space Telescope Y. Sheffer, M. Rogers, S. R. Federman Department of Physics and Astronomy.
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Recent status of the NANTEN2 and Nagoya project Hiroaki Yamamoto NANTEN2 project, Nagoya University NANTEN2 Adelaide Image: Pampa.
Jet Propulsion Laboratory
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Galactic Legacy Projects Naomi McClure-Griffiths Australia Telescope National Facility, CSIRO NRAO Legacy Projects Meeting, 17 May 2006.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
Why do we need interferometry? Measuring the gas distribution and rotation in disk galaxies: radio observations with interferometer arrays and aperture.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
ASTR112 The Galaxy Lecture 5 Prof. John Hearnshaw 8. Galactic rotation 8.3 Rotation from HI and CO clouds 8.4 Best rotation curve from combined data 9.
STO Test Flight Strawman
Structure & Magnetic Fields of the Star-Forming Region NGC 6334A
V. Bobylev and A. Bajkova Pulkovo Observatory, St. Petersburg, Russia
The Milky Way Nucleus Bulge Bar Disk Halo.
Bolocam Galactic Plane Survey Herschel Hi-GAL Plane Survey
The MALT90 survey of massive star forming regions
20 diffuse catalogue fans
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
Thin, Cold Strands of Hydrogen in the Riegel-Crutcher Cloud
GBT Galactic HII Region Discovery Survey Dana S. Balser
Status and issues for the LAT interstellar emission model
Disk, Bulge, Halo Rotation Curve Galactic Center
The molecular gas associated with the Association Ara OB1
Fermi-LAT Study of Diffuse g-rays and CRs in the outer Galaxy
Cold Dark Matter Flows and Caustics
(National Astronomical Observatory of Japan)
MASER Microwave Amplification by Stimulated Emission of Radiation
Galactic Diffuse Emission for DC2
The Case for Axion Dark Matter
T.G.Arshakian MPI für Radioastronomie (Bonn)
Dark matter and anomalous gas in the spiral galaxy NGC 4559
Diffuse Gamma-Rays seen by Fermi Gamma-ray Space Telescope
More on Milagro Observations of TeV Diffuse Emission in Cygnus
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey Title Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey Yoshiaki Moriguchi Max-Plank-Institut für Kernphysik Nagoya University 23-24 May 2005@SLAC

Neutral ISM in the Galactic Disk Radial mass surface density density observation line - HI: 1-10 cm-3 HI (21 cm) - H2: 102-104 cm-3 CO(J=1-0) (2.6 mm) How to estimate gas mass from CO spectrum? ↓ brightness temperature ⇨ column density ⇨ gas density assumptions depth of a cloud toward the line of sight distance of cloud N(H2)/W(CO) conversion ratio (X-factor) Rgal (kpc) S (Ma pc-2) R = 8.5 kpc Scale height: H2 ~ 60 pc HI ~ a few×100 pc (increase with R)

Advantages of Molecular Observations line profiles of CO and HI VLSR (km/s) HI CO x5 (340°, 0°) T (K) better angular resolution better velocity resolution smaller line-width  ⇨ less contamination    in velocity field (4) trace more dense gas  ⇨ better probe of spiral arms and/or   GMCs coupling with cosmic rays

CO Galactic plane surveys Galactic latitude (degree) Galactic longitude (degree) FCRAO UMassSB NANTEN name diameter beam grid covered area longitude range Columbia 1.2m 8.7′ 8-15’ |b| < 10-25° (complete) Mass.-S.B. 14m 45″ 3-6’ |b| < 1° (inner Galaxy, 13CO) FCRAO 14m 45″ 50” |b| < 4° (outer Galaxy) NANTEN 4m 2.6′ 4-8’ |b| < 10-25° (220°< l < 60°)

NANTEN 4m radio telescope Las Campanas Observatory, Chile Nagoya University radio astronomy group supercondactor mixer Frequency band : 85 -115GHz Beam size = 2.6′(@115GHz) Velocity resolution = 0.1 or 0.6 km/s Velocity coverage = 100 or 650 km/s Tsys =100-300 K

NANTEN 12CO (J=1-0) Galactic Plane Survey Observed area: 220° < l < 60°, |b| < 10-25° Grid spacing: 4’ (|b| < 5° ) 8’ (|b| > 5° ) Number of spectra: 1,100,000 Sensitivity: ~ 0.4 K

Galactic Center

Longitude-Velocity 300 100 -100 -300 -10 10 Velocity (km/s) -100 -300 -10 10 Galactic Longitude (degree)

Typical Profiles Integ. time

Galactic Warp

spiral structure and kinematic distance two solutions for the inner Galaxy Ternimal velocity Assumption of circular velocity is needed.

How to solve distance ambiguity? (Kolpak et al. 2000) Self absorption by cold HI gas ⇨ evidence of Nearside CO cloud (HI data with high sensitivity and high resolution is necessary.)

Title Galactic rotation curve models Reference Area data Burton & Gordon (1978) Quad 1 HI, CO Clemens (1985) 13° < l < 85° CO, HI Fich et al. (1989) north HI, CO, HII Alvarez et al. (1992) -10° < l < 210° CO Merrifield (1992) External Gal. HI Brand & Blitz (1993) Outer Gal. HI, CO, HII, Neb.

Errors of rotation curve Brand & Blitz (1993) Clemens (1985) Circular velocity (km/s) Galactocentric distance (kpc) dependence on models: 10 ~ 20 % error cloud-cloud velocity dispersion by random motion etc.:~ 10 km/s (e.g. Stark & Brand 1989)

H2 - HI top-view of the Galactic disk White circle: CO cloud (NANTEN) gray scale: HI (Parkes 18m, Kerr et al. 1986) rotation curve model: Brand & Blitz (1993)

X - Factor Radial variation of X-factor How to estimate X-factor? ・far-IR/CO/HI combination ・Galactc diffuse gamma-ray ・virial mass of clouds 1.9×1020 (Strong & Mattox 1996) 1.3×1020 (Reach et al. 1998) 1.8×1020 (Solomon et al. 1987) 0.8×1020 (Oka et al. 1998) NANTEN ~ 3×1020 (3rd quad.) ~ 5.4 ×1020 (Warp)

Verification of X-factor Virial mass - CO luminosity relation using NANTEN (this method requires an assumption that the cloud is virialized) CO+HI+far IR ⇨ NANTEN + SGPS + IRAS (or ASTRO-F) ASTRO-F launch in 2005 gamma-ray ⇨ GLAST + NANTEN + SGPS GLAST launch in 2007 SGPS L=253-358 degree, -1.5 < B <1.5 deg by ATCA (2’), (+-10 deg by Parkes 15’)

NANTEN 2 Project Starting test observations in 2005 Dec. 4-m sub-mm telescope for extended CO/CI surveys target frequency: 100-800 GHz (beam size = 2.6’ - 22”) Nagoya Univ., Osaka Prefecture Univ. (Japan) Universitaet zu Koeln, Universitaet Bonn (Germany) Seoul National Univ. (Korea) Univ. of Chile (Chile) Atacama, Pampa la Bola site Starting test observations in 2005 Dec.

Summery ・NANTEN Galactic Plane Survey produces high-quality  molecular maps of the southern sky ・Galactic rotation curve, X-factor Dependence on models should be considered. ・telescope developments: NANTEN → NANTEN2

12CO HI