Regulation of Presynaptic Neurotransmission by Macroautophagy

Slides:



Advertisements
Similar presentations
Volume 70, Issue 4, Pages (May 2011)
Advertisements

Volume 86, Issue 5, Pages (June 2015)
Motor Protein KIF1A Is Essential for Hippocampal Synaptogenesis and Learning Enhancement in an Enriched Environment  Makoto Kondo, Yosuke Takei, Nobutaka.
Volume 49, Issue 4, Pages (February 2006)
Volume 86, Issue 2, Pages (April 2015)
Volume 48, Issue 6, Pages (December 2005)
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Volume 66, Issue 6, Pages (June 2010)
Volume 76, Issue 3, Pages (November 2012)
Guangying K. Wu, Pingyang Li, Huizhong W. Tao, Li I. Zhang  Neuron 
Volume 79, Issue 3, Pages (August 2013)
Volume 49, Issue 6, Pages (March 2006)
Volume 86, Issue 4, Pages (May 2015)
Functional Convergence at the Retinogeniculate Synapse
Volume 77, Issue 5, Pages (March 2013)
Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures  Sattar Khoshkhoo, Daniel Vogt, Vikaas.
Volume 81, Issue 4, Pages (February 2014)
Activation of VTA GABA Neurons Disrupts Reward Consumption
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Volume 77, Issue 1, Pages (January 2013)
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Volume 82, Issue 1, Pages (April 2014)
PSA–NCAM Is Required for Activity-Induced Synaptic Plasticity
Volume 82, Issue 6, Pages (June 2014)
Volume 71, Issue 2, Pages (July 2011)
Volume 85, Issue 2, Pages (January 2015)
Volume 77, Issue 1, Pages (January 2013)
Jianrong Tang, John A. Dani  Neuron 
Volume 83, Issue 5, Pages (September 2014)
Volume 96, Issue 4, Pages e5 (November 2017)
Volume 77, Issue 5, Pages (March 2013)
Tumor Necrosis Factor-α Mediates One Component of Competitive, Experience- Dependent Plasticity in Developing Visual Cortex  Megumi Kaneko, David Stellwagen,
Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila Olfactory Pathway  Seth M. Tomchik, Ronald L. Davis  Neuron  Volume.
Recruitment of N-Type Ca2+ Channels during LTP Enhances Low Release Efficacy of Hippocampal CA1 Perforant Path Synapses  Mohsin S. Ahmed, Steven A. Siegelbaum 
Volume 83, Issue 2, Pages (July 2014)
Volume 88, Issue 4, Pages (November 2015)
Volume 146, Issue 5, Pages (September 2011)
Molecular Therapy - Methods & Clinical Development
Inhibitory Regulation of Electrically Coupled Neurons in the Inferior Olive Is Mediated by Asynchronous Release of GABA  Aaron R. Best, Wade G. Regehr 
Volume 16, Issue 2, Pages (July 2016)
Volume 90, Issue 3, Pages (May 2016)
Volume 17, Issue 9, Pages (November 2016)
Volume 60, Issue 4, Pages (November 2008)
Volume 146, Issue 5, Pages (September 2011)
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Volume 50, Issue 3, Pages (May 2006)
Volume 52, Issue 4, Pages (November 2006)
Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory  Felix Leroy, David H. Brann, Torcato Meira, Steven.
Volume 80, Issue 6, Pages (December 2013)
Volume 26, Issue 6, Pages e3 (February 2019)
The Role of Rapid, Local, Postsynaptic Protein Synthesis in Learning-Related Synaptic Facilitation in Aplysia  Greg Villareal, Quan Li, Diancai Cai, David L.
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons  Shana M. Augustin, Jessica.
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Matthew S. Kayser, Mark J. Nolt, Matthew B. Dalva  Neuron 
Volume 98, Issue 2, Pages e4 (April 2018)
Volume 58, Issue 1, Pages (April 2008)
Leptin Regulation of the Mesoaccumbens Dopamine Pathway
Activation of VTA GABA Neurons Disrupts Reward Consumption
Volume 42, Issue 4, Pages (May 2004)
Genetic Dissection of Presynaptic and Postsynaptic BDNF-TrkB Signaling in Synaptic Efficacy of CA3-CA1 Synapses  Pei-Yi Lin, Ege T. Kavalali, Lisa M.
Volume 78, Issue 3, Pages (May 2013)
Erika D. Nelson, Ege T. Kavalali, Lisa M. Monteggia  Current Biology 
Volume 66, Issue 2, Pages (April 2010)
Nicole Calakos, Susanne Schoch, Thomas C. Südhof, Robert C. Malenka 
Michael U. Shiloh, Paolo Manzanillo, Jeffery S. Cox 
Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors
Volume 90, Issue 1, Pages (April 2016)
Fig. 1. Differential activity-induced secretion of overexpressed BDNF from cortical axons or striatal neurites in the normal or Q140 heterozygote mice.
Volume 66, Issue 6, Pages (June 2010)
Presentation transcript:

Regulation of Presynaptic Neurotransmission by Macroautophagy Daniela Hernandez, Ciara A. Torres, Wanda Setlik, Carolina Cebrián, Eugene V. Mosharov, Guomei Tang, Hsiao-Chun Cheng, Nikolai Kholodilov, Olga Yarygina, Robert E. Burke, Michael Gershon, David Sulzer  Neuron  Volume 74, Issue 2, Pages 277-284 (April 2012) DOI: 10.1016/j.neuron.2012.02.020 Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 Macroautophagy Deficiency Results in Morphological Alterations In Vivo Dopaminergic striatal axonal projections from 8-week-old male mice were identified by TH immunolabel. (A) Representative electron micrographs in DAT Cre and Atg7 DAT Cre mice. Arrowheads indicate TH+ axonal profiles. Scale bars represent 500 nm. (B) There was no difference in the number of TH+ profiles/100 μm2 between DAT Cre and Atg7 DAT Cre mice (p > 0.05; t test). (C) The total area occupied by TH+ profiles in striatum from Atg7 DAT Cre was larger than in DAT Cre mice (p < 0.05; two-tailed t test). (D) The average area of TH+ profiles was 45% larger in Atg7 DAT Cre (n = 84) than DAT Cre (n = 61) (p < 0.05; t test). (E) There was no significant difference in the size of TH− profiles between DAT Cre (n = 26) and Atg7 DAT Cre (n = 27) mice (p > 0.05; t test). (F) Rapamycin in vivo (administered twice, 36 and 12 hr prior to sacrifice) decreased TH+ profiles by 32% in DAT Cre mice (n = 51, DMSO; n = 54, rapamycin), but not in Atg7 DAT Cre mice (n = 116, DMSO; n = 61, rapamycin; interaction between rapamycin and genotype, F = 6.72; p < 0.01; two-way ANOVA). Error bars indicate SEM. Neuron 2012 74, 277-284DOI: (10.1016/j.neuron.2012.02.020) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 2 Evoked Dopamine Release in Atg7 DAT Cre Mice (A) Cyclic voltammetry recordings of evoked dopamine release from slices of dorsal striatum from DAT Cre and Atg7 DAT Cre mice. (B) Evoked DA release was higher in Atg7 DAT Cre mice than in DAT Cre controls (p < 0.005; t test). There was no difference in the half-life (t1/2) of the DA signals from DAT Cre and Atg7 DAT Cre (Figure S2). (C) Representative traces from paired-pulse recordings at interstimulus intervals of 5–60 s from a DAT Cre and Atg7 DAT Cre slice (slightly offset to aid comparison). (D) Paired-pulse ratio at interstimulus intervals of 1–60 s (mean ± SEM). Atg7 DAT Cre recovery was faster than DAT Cre controls (p < 0.05; repeated-measures ANOVA). (E) Representative traces from control (DMSO vehicle) and rapamycin-treated (red) DAT Cre and Atg7 DAT Cre slices. (F) Rapamycin decreased the peak amplitude of dopamine signals in DAT Cre striata by 25% ± 3% but decreased it by only 6% ± 6% in Atg7 DAT Cre striata (p < 0.05; two-way ANOVA). Rapamycin had no effect on the signal t1/2 (Figure S2). Error bars indicate SEM. Neuron 2012 74, 277-284DOI: (10.1016/j.neuron.2012.02.020) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 3 Rapamycin Effects on LC3 in VM DA Neurons (A) Somatodendritic regions of dopaminergic neurons (TH+, red immunolabel) derived from wild-type (WT) and DAT Cre mice exposed to rapamycin (RAPA, 3 μM, 3.5 hr) exhibited an increased number of LC3+ puncta (green immunolabel, examples indicated by white arrowheads) compared to dopaminergic neurons treated with vehicle (DMSO). There was no induction of LC3+ puncta by rapamycin in DA neurons from Atg7 DAT Cre mice. Scale bar represents 10 μm. (B) Similar results were observed throughout neurites. Rapamycin increased LC3 puncta (white arrows) in TH+ neurites, but not in Atg7-deficient dopaminergic neurites. Scale bar represents 4 μm. (C) Number of LC3+ puncta per TH+ neuron (cell bodies and neurites) for these conditions (mean ± SEM; n = 3 experimental repeats, 30 neurons rated per experiment per condition; t test; ns, nonsignificant; ∗∗p < 0.01). (D) Rapamycin at 3.5 hr increased LC3-II by 56% (n = 3; p < 0.001; two-way ANOVA) but had no effect at 7 hr, indicating a temporary induction of LC-II in the slice preparation consistent with turnover of AVs. Error bars indicate SEM. Neuron 2012 74, 277-284DOI: (10.1016/j.neuron.2012.02.020) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 4 Acute mTOR Inhibition Induces Morphological Changes at Synaptic Terminal Profiles (A and B) Electron micrographs from untreated corticostriatal slices (A) and rapamycin-treated corticostriatal slices (3 μM, 7 hr) (B). Presynaptic terminal AV-like organelles are marked by red arrowheads. Scale bars represent 500 nm. (C) Rapamycin increased the fraction of synaptic terminal profiles with AV-like organelles (p < 0.05; chi-square). (D) Acute rapamycin decreased terminal profile area (p < 0.05; t test). (E) Synaptic terminal profiles from rapamycin-treated slices contained fewer synaptic vesicles than untreated slices (p < 0.0001; t test). Error bars indicate SEM. Neuron 2012 74, 277-284DOI: (10.1016/j.neuron.2012.02.020) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 5 Effects of Rapamycin on Synaptic Vesicles in Terminals Labeled by the False Transmitter 5-Hydroxydopamine For each experiment, slices from the same mouse were compared. (A and B) Examples of synaptic terminals from striatal slices from a wild-type mouse incubated with vehicle (DMSO) for 6.5 hr and followed by 5-hydroxydopamine (5OHDA) (500 μM) for 30 min. (C and D) Examples of terminals in the striatal slice exposed to rapamycin (3 μM, 6.5 hr) and followed by 5OHDA for 30 min. Yellow arrows indicate examples of synaptic vesicles in nondopaminergic terminals; blue arrows indicate labeled dopaminergic synaptic vesicles; red arrow indicates a structure that may be an isolation membrane. Scale bar represents 100 nm. (E–G) Number of synaptic vesicles per unit area (μm2) of 5OHDA-labeled terminals after exposure to DMSO or rapamycin in wild-type (E), DAT Cre (F), or Atg7 DAT Cre (G) striatal slices. ∗p < 0.05; t test. Error bars indicate SEM. Neuron 2012 74, 277-284DOI: (10.1016/j.neuron.2012.02.020) Copyright © 2012 Elsevier Inc. Terms and Conditions