Department of Chemistry

Slides:



Advertisements
Similar presentations
© E.V. Blackburn, 2008 Carbohydrates Saccharides - saccharum (Latin) - sugar.
Advertisements

Chapter 16 Carbohydrates
Chapter 12 Carbohydrates
IMPORTANT FUNCTIONS OF CARBOHYDRATES To provide energy through their oxidation To supply carbon for the synthesis of cell components To serve as a stored.
Chapter 17: Carbohydrates
They can be regarded as the complexes of carbon and water. Carbohydrate is a type of organic compounds Containing carbon, hydrogen and oxygen. Because.
XXXI. Carbohydrates A.Overview Carbohydrates are the most abundant class of naturally occurring organic compounds. They make up 50% of the earth’s biomass.
Carbohydrates Centres of chirality Asymmetric carbons Stereoisomers R,S nomenclature Racemic mixtures.
Chapter Eighteen Carbohydrates Ch 18 | # 2 of 52 Carbohydrates cont’d.
Wood Chemistry PSE Lecture 41 Wood Chemistry PSE 406/Chem E 470 Lecture 4 More Sugars: Disaccharides and Rings.
Case Western Reserve University
Chapter 18 Carbohydrates. Goals Distinguish and describe mono, di, oligo, and polysaccharides Classify and name monosaccharides Know D aldose and ketose.
Carbohydrates What are they? –Sugars, starches & much more –Most abundant molecules on Earth –End products of photosynthesis.
Chapter 8 (part 1) Carbohydrates.
Lab 5: Qualitative Analysis Test for Carbohydrates
General, Organic, and Biological Chemistry
CLS 101: Chemistry for Nursing
Part II Biochemistry IUG, Fall 2013 Dr. Tarek Zaida 1 The branch of chemistry that deals with the different molecules, their structure, composition, and.
Lecture 1. Introduction about Biochemistry Biochemistry :- (from Greek : βίος, bios, "life") is the study of the chemical processes in living organisms.
246 Chapter 25: Carbohydrates hydrates of carbon: general formula C n (H 2 O) n Plants: photosynthesis 6 CO H 2 O C 6 H 12 O O 2 Polymers:
Chapter 25 Biomolecules: Carbohydrates. 2 The Importance of Carbohydrates Carbohydrates are… –widely distributed in nature. –key intermediates in metabolism.
Chapter 17: Carbohydrates Spencer L. Seager Michael R. Slabaugh Jennifer P. Harris.
CARBOHYDRATES Carbohydrates are a major energy source for living organisms Carbohydrates always have a 1:2:1 ratio of carbon, hydrogen, and oxygen. Mitochondria.
Oxidation of Carbohydrates Most living organisms that live in air obtain energy by oxidation of carbohydrates. Glucose is the most common simple carbohydrate.
Carbohydrates. Introduction: Carbohydrates are the most abundant organic compounds in the plant world They are storehouses of chemical energy (glucose,
CARBOHYDRATE CHEMISTRY DR AMINA TARIQ BIOCHEMISTRY.
Chapter 18: Carbohydrates
Copyright © Houghton Mifflin Company. All rights reserved.3–13–1 Biochemistry Biochemistry is the study of chemical substances found in living systems.
Heterocyclic Chemistry Chapter 5 Carbohydrates. Heterocyclic Chemistry Biological importance  Carbohydrates are compounds of tremendous biological importance:
Carbohydrates Introduction
17.5 Properties of Monosaccharides
Chapter 20 Carbohydrates. Carbohydrates Carbohydrate: Carbohydrate: A polyhydroxyaldehyde or polyhydroxyketone, or a substance that gives these compounds.
Carbohydrates Carbohydrate: A compound with multiple hydroxy and/or carbonyl groups that has the general formula C x (H 2 O) y ; a hydrate of carbon. The.
Chem 1152: Ch. 17 Carbohydrates. Introduction Biomolecules: Organic compounds produced by living organisms Carbohydrates Lipids Proteins Nucleic acids.
Chapter 7 Carbohydrates.
1 Aldoses and Ketoses aldo- and keto- prefixes identify the nature of the carbonyl group -ose suffix designates a carbohydrate Number of C’s in the monosaccharide.
Chapter 20: Carbohydrates Carbohydrate: Carbohydrate: A polyhydroxyaldehyde or polyhydroxyketone, or a substance that gives these compounds on hydrolysis.
CARBOHYDRATE CHEMISTRY SUURBAAR JENNIFER. I NTRODUCTION Carbohydrates are one of the three major classes of biological molecules. Carbohydrates are also.
CARBOHYDRATE CHEMISTRY UNIT-1 CHAPTER-2. I NTRODUCTION Carbohydrates are one of the three major classes of biological molecules. Carbohydrates are also.
Chapter 24 Carbohydrates and Nucleic Acids
Chemistry of Carbohydrates
CARBOHYDRATES Carbohydrates.
Introduction to Carbohydrates of medical importance
Chapter 14 Biomolecules: Carbohydrates
Sample Problem 15.1 Monosaccharides
CARBOHYDRATE CHEMISTRY
Part II Biochemistry The branch of chemistry that deals with the different molecules, their structure, composition, and chemical processes in the living.
Lecture 4 More Sugars: Disaccharides and Rings
Carbohydrates Dr. Gamal Gabr.
LincoLarry Jln High School
Fundamentals of Organic Chemistry
CARBOHYDRATE CHEMISTRY
Chapter 12 Carbohydrates
Chapter 12 Carbohydrates
Fundamentals of Organic Chemistry
Organic Chemistry 145 CHEM Carbohydrates.
CARBOHYDRATE CHEMISTRY
The Organic Chemistry of Carbohydrates
CARBOHYDRATE CHEMISTRY
3.2 MONOSACCHARIDES.
Chapter 8 (part 1) Carbohydrates.
Introduction to Carbohydrates of medical importance
Chapter 14 Biomolecules: Carbohydrates
Classification of Carbohydrates
Chapter 16 Carbohydrates Adel M. Awadallah Islamic University of Gaza
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry CHAPTER 6: Carbohydrates
Carbohydrates Carbohydrate: a polyhydroxyaldehyde or polyhydroxyketone, or a substance that gives these compounds on hydrolysis Monosaccharide: a carbohydrate.
CARBOHYDRATES LECTURE-01.
Organic Chemistry 145 CHEM Carbohydrates.
Presentation transcript:

Department of Chemistry College of Science Biopolymers Chem. 563 Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy

POLYSACCHARIDES

The word carbohydrate can be expressed as hydrates of carbon because molecular formulas of these compounds. Example; Glucose has the molecular formula C6H12O6, which might be written as C6(H2O)6. Carbohydrates are polyhydroxyaldehydes, polyhydroxyketones, or substances that give such compounds on hydrolysis. The chemistry of carbohydrates is mainly the combined chemistry of two functional groups: the hydroxyl group and the carbonyl group. Carbohydrates are usually classified according to their structure as monosaccharides, oligosaccharides, or polysaccharides. The term saccharide comes from Latin (saccharum, sugar) and refers to the sweet taste of some simple carbohydrates. The three classes of carbohydrates are related to each other through hydrolysis.

Monosaccharides (or simple sugars, as they are sometimes called) are carbohydrates that cannot be hydrolyzed to simpler compounds. Polysaccharides contain many monosaccharide units—sometimes hundreds or even thousands. Usually, but not always, the units are identical. Example; starch and cellulose, contain linked units of the same monosaccharide, glucose. Oligosaccharides (from the Greek oligos, few) contain at least two and generally no more than a few linked monosaccharide units. They may be called disaccharides, trisaccharides, and so on, depending on the number of units, which may be the same or different. Example; Maltose is a disaccharide made of two glucose units. Sucrose is made of two different monosaccharide units: glucose and fructose.

Chirality in Monosaccharides; Fischer Projection Formulas and D,L-Sugars He used a small capital d to represent the configuration of (+)-glyceraldehyde, with the hydroxyl group on the right; its enantiomer, with the hydroxyl group on the left, was designated L-(2)-glyceraldehyde. The most oxidized carbon (CHO) was placed at the top.

Diastereomers; when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other. Epimers; A special name is given to diastereomers that differ in configuration at only one stereogenic center. Each pair has the same configurations at all stereogenic centers except one. Examples; D-(-)-Erythrose and D-(-)-threose are not only diastereomers, they are epimers. D-glucose and D-mannose are epimers (at C-2) D-glucose and D-galactose are epimers (at C-4). Dextrorotation (+) and levorotation (-) are terms describing circular direction of rotating plane-polarized light. Dextrorotatory (+); If the light rotates clockwise, (rotation to the right). Levorotatory (-); if it rotates counterclockwise, (rotation to the left).

The Cyclic Hemiacetal Structures of Monosaccharides Monosaccharides exist mainly in cyclic, hemiacetal forms and not in the acyclic aldo- or keto-forms. Manipulation of the Fischer projection formula of D-glucose to bring the C-5 hydroxyl group in position for cyclization to the hemiacetal form.

Haworth projection The carbons are arranged clockwise numerically, with C-1 at the right. Substituents attached to the ring lie above or below the plane. Carbons 1 through 5 are part of the ring structure, but carbon 6 (the -CH2OH group) is a substituent on the ring. C-1 is special. C-1 is the hemiacetal carbon (it carries a hydroxyl group, and it is also connected to C-5 by an ether linkage). C-2, C-3, and C-4 are secondary alcohol carbons. C-6 is a primary alcohol carbon; C-5 is an ether carbon. Hydroxyl groups on the right in the Fischer projection are down in the Haworth projection (and conversely, hydroxyl groups on the left in the Fischer projection are up in the Haworth projection). For D-sugars, the terminal -CH2OH group is up in the Haworth projection; for L-sugars, it is down.

Anomeric Carbons; Mutarotation Anomeric carbon; The hemiacetal carbon, the carbon that forms the new stereogenic center. Anomers; Two monosaccharides that differ only in configuration at the anomeric center are (a special kind of epimers). Anomers are called  or , depending on the position of the hydroxyl group. For monosaccharides in the D-series, the hydroxyl group is “down” in the  anomer and “up” in the  anomer. If D-glucose is crystallized from methanol, the pure  form is obtained. Crystallization from acetic acid gives the  form. The  and  forms of D-glucose are diastereomers.

Conformations of Pyranoses; chair conformation At the anomeric carbon (C-1), where the hydroxyl group may be axial (in the  anomer) or equatorial (in the  anomer).

Disaccharides The most common oligosaccharides are disaccharides. In a disaccharide, two monosaccharides are linked by a glycosidic bond between the anomeric carbon of one monosaccharide unit and a hydroxyl group on the other unit.

Carbohydrates are the most abundant organic compounds, constituting three-fourths of the dry weight of the plant world. They represent a great storehouse of energy as a food for humans and animals. About 400 billion tons of sugars is produced annually through natural photosynthesis. While these sugars differ in specific biological activity, their gross chemical reactivity are almost identical, permitting one to often employ mixtures within chemical reactions without regard to actual structure with respect to most physical properties of the resulting product. Carbohydrates are diverse with respect to both occurrence and size. Examples; Familiar mono and disaccharides include glucose, fructose, sucrose (table sugar), cellobiose, and mannose .

Familiar polysaccharides along with their natural sources, purity, molecular weight, amount, and location of source.

The most important polysaccharides are cellulose and starch. These may be hydrolyzed by acids or enzymes to lower molecular weight carbohydrates (oligosaccharides) and finally to D-glucose. Polysaccharides (cellulose and starch) Hydrolysis by acids or enzymes Lower molecular weight carbohydrates (oligosaccharides) Monomers (D-glucose) The latter (D-glucose) is the building block, or mer, for carbohydrate polymers, and since it cannot be hydrolyzed further, it is called a monosaccharide.

Cellobiose and maltose, which are the repeat units in cellulose and starch, are disaccharides, consisting of molecules of D-glucose joined together through carbon atoms 1 and 4. The D-glucose units in cellobiose are joined by a β -acetal linkage Chair form of cellobiose repeat unit in cellulose The D-glucose units in maltose are joined by an α-acetal linkage. Chair of maltose repeat unit in amylose. The hydroxyl groups in the β form of D-glucose are present in the equatorial positions, and the hydroxyl on carbon 1 (the anomeric carbon atom) in the α form is in the axial position.

The hydroxyl groups in the β form of D-glucose are present in the equatorial positions, and the hydroxyl on carbon 1 (the anomeric carbon atom) in the α form is in the axial position. While the chair forms shown for D-glucose, cellobiose, and maltose exist in all disaccharides and polysaccharides, simple Boeseken-Haworth perspective planar hexagonal rings will be used for simplicity in showing polymeric structures of most carbohydrates.