OGM – VAJE RAČUNALNIŠKI PROGRAMI: Amses FRAME 2D

Slides:



Advertisements
Similar presentations
LE MOMENT. Calcul des moments LE MOMENT Calcul des moments.
Advertisements

Sample Problem 4.2 SOLUTION:
T1. DESIGN OF STEEL BEAMS Steel framed building
Basic structural theory. Statics Things dont continue to move if forces are resisted – Static Equilibrium What resists the force? Equal and opposite Reaction.
Solutions for Prestressed Reinforced Concrete Structures
T4. DESIGN OF TIMBER COLUMN (axial compression) T4. Design of timber column page 1. Timber framed building Floor plan Section Example: Checking column.
T6. DESIGN OF REINFORCED CONCRETE BEAM Reinforced concrete framed building T6. Design of reinforced concrete beam page 1. Alaprajz Floor plan Beam: linear.
Deflection of Indeterminate Structure Session Matakuliah: S0725 – Analisa Struktur Tahun: 2009.
Chapter 3 – Stress and Deformation Analysis (ref MCHT 213!!)
Sample Problem 4.2 SOLUTION:
Beams and Frames.
Torsional Shaft Function: transmit torques from one plane to the other. Design of torsional shafts: stress and deformation T T T.
2o Ciclo de Palestras em Engenharia Civil de Novembro de 2003 Universidade Nova de Lisboa-Centro de Investigaçao em Estruturas e Construção-UNIC.
ENGR 220 Section
DEFLECTIONS (Chapter 8) WHY? FACTORS IN DESIGN Safety Esthetics Serviceability Environment Economy DETERMINACY Determinate Structures Equations of Equilibrium.
4 Pure Bending.
Sample Problem 4.2 SOLUTION:
10 Pure Bending.
Section 8.3 – Systems of Linear Equations - Determinants Using Determinants to Solve Systems of Equations A determinant is a value that is obtained from.
Oasys Concrete Analysis & Design
Design Example The 10” TH. wall system shown in the figure below is to be checked for a service gravity load of 3 Kips/ft and a lateral load of 25 Kips,
Beams and Deflections Zach Gutzmer, EIT
Example: Bridge.
Steel Connections Program to calculate steel structures connections according to EC3 and DIN18800.
Strength Resistance to failure. Strength Types 1.Compressive strength 2.Tensile strength 3.Flexural strength 4.Shear strength 5.Torsional strength 6.Bond.
CE 382 Structural Analysis
Chapter 4 Pure Bending Ch 2 – Axial Loading Ch 3 – Torsion
Forging new generations of engineers
Mechanics of Materials
Chapter 4 Pure Bending Ch 2 – Axial Loading Ch 3 – Torsion Ch 4 – Bending -- for the designing of beams and girders.
Thermal Stress Objective: Lecture # 8
Dr Kafeel Ahmed Strength Resistance to failure. Dr Kafeel Ahmed Strength Types 1.Compressive strength 2.Tensile strength 3.Flexural strength 4.Shear strength.
Structural Drafting Shear stress in Bolts. Fastener Loads and Stresses Load:External force applied to a member. Stress: Internal force acting on a member.
STIFFNESS MATRIX METHOD
TORSION OF A SHAFT WITH A SHOULDER FILLET
Installfest delavnica mag. Aleš Košir Lugos
Sample Problem 4.2 SOLUTION:
Pure Bending.
Energy Methods of Hand Calculation
Overview of Loads ON and IN Structures / Machines
Bridge modelling with CSI software.
Deflections using energy methods
1.6 Allowable Stress Allowable Load < Failure Load
ES2501: Statics/Unit 20-1: Internal Forces in Beams
ASSESSEMENT AND REHABILITATION OF STRUCTURES
SINGLY REINFORCED SECTION. INTERNAL FORCES IN EQUILIBRIUM.
Beams and Frames.
Chapter 3 BENDING MEMBERS.
Contents Introduction Identification of the knowledge gap
INTERNAL FORCES AND FORCES IN BEAMS
R V P 2 Predavanje 04 Animacija RVP2 Animacija.
Grafični vmesnik - GUI Izdelava obrazca: lastnosti, odzivne metode
DNS mr Milovan B. Ivanović, dipl. inž. el.
CE 808: Structural Fire Engineering SAFIR - Computer Program
Uporaba vrtilnih tabel za analizo množice podatkov
4 Pure Bending.
MS Excel, Open Office Calc, Gnumeric …
Columns With Combined Bending and Axial Load
Sample Problem 4.2 SOLUTION:
Beams.
Katedra za metalne konstrukcije
A New Force-Measuring Device
Architecture Engineering Department Concrete Design Third Year
Structural Analysis II
Internal Forces.
Strucural fire design of steel elements
What is a beam? Structural member that supports a load
Forging new generations of engineers
4 Pure Bending.
Presentation transcript:

OGM – VAJE RAČUNALNIŠKI PROGRAMI: Amses FRAME 2D prof.dr. Vojko Kilar, u.d.i.g. asist. mag. Tomaž Slak, u.d.i.a. OGM – VAJE RAČUNALNIŠKI PROGRAMI: Amses FRAME 2D

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV Geometry, Loads GEOMETRIJA, “linijski elementi” (2D,) Geometry/Linear elements… PODPORE (členki, sprostitve…) Supports MATERIALI (E, G, masa… Materials PREREZI (A, I, W, oblika prerezne ploskve, standardni profili iz podatkovnih knjižnic …) Cross-sections OBTEŽBA (obtežni primeri, kombinacije) Load Case, Action ANALIZA KONSTRUKCIJE Solve REZULTATI Results, Print (Print Preview) POMIKI Displacements, Rotations, Local Uz NAPETOSTI, NOTRANJE SILE, REAKCIJE Moments, Axial Forces, Shear Forces (File/Print Preview) DIMENZIONIRANJE Design

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – GEOMETRIJA /zavihek “Geometry”/ Priprava “papirja”. Enote (Metric)! File/Open/New  Finish Risalna površina “papir” Mreža je avtomatska in s korakom po 0,1m. zavihek: Geometrija Dodajanje linearnega linijskega elementa

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – GEOMETRIJA: Risanje: Geometry/Linear Elements (linijski elementi) Rišemo približno, nato z desnim klikom na vozlišče izberemo Properties in določimo točno pozicijo vozlišča  Apply Desni klik/Properties  vpis koordinat  Apply

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – GEOMETRIJA: Risanje: Geometry/Linear Elements (linijski elementi) Rišemo lahko točno po korakih mreže, ki se sproti izpisuje med risanjem. Ko smo na želeni točki, zaključimo črto. Pomagamo si lahko z vključenim ortogonalnim načinom. Ortogonalni način

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – PODPORE: Izberemo vrsto podpore (desna stran okna)  klik na vozlišče. Vrstica s podporami Vrstica s podporami Podpora v izbranem vozlišču

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – ČLENKI: Z desnim klikom na element izberemo Properties  obkljukamo želeno sprostitev (npr. Rotation y-y)  Apply

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – MATERIALI: Geometry/Materials…  New…  Steel  izberemo Eurocode 3 in vrsto jekla (S 275) Geometry/Materials…  New…  Concrete  izberemo Eurocode 2 in vrsto materiala (C 25/30)  Reinforcement Steel (Armatura) JEKLO: BETON: ARMATURA:

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – MATERIALI: Geometry/Materials…  New…  General  vnesemo parametre LES:

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – PREREZI: Geometry/Cross-section…  New…  Rectangle (za pravokotni prerez) Geometry/Cross-section…  New…  I (double sym.) (za I profile)  Standard sections (za standardne profile: IPE, HEA,…) pravokotni prerez I profil

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – PREREZI: Desni klik na element  Properties  Material in Cross-section  izberemo ustrezno lastnost elementa  Apply desni klik na element kurzor na element

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – OBTEŽBA /zavihek “Loads”/ OBTEŽNI PRIMER: Actions/Load cases Manager…  Add New Case… OBTEŽBA: Actions / Action 1…  Add linear element load  klik na element  vpis obtežbe dvoklik Dodajanje vrstic in kolon dvoklik zavihek: Loads

RAČUNALNIŠKE VAJE – Frame 2D VNOS PODATKOV – OBTEŽBA OBTEŽBA: Actions / Action 2…  Add concentrated force  klik na element ali vozlišče  vpis sile dvoklik

RAČUNALNIŠKE VAJE – Frame 2D ANALIZA KONSTRUKCIJE /Solve/ Solve / Solve REZULTATI /zavihek “Results”/ Load case: # (dvoklik) Diagram/Moments, Diagram/Axial Forces… Momenti Osne sile Prečne sile Pomiki… zavihek: Results

RAČUNALNIŠKE VAJE – Frame 2D REZULTATI /zavihek “Design”/ DIMENZIONIRANJE Steel ali Reinforced Concrete / [#] Element  Ultimate limit states… Presežene napetosti

RAČUNALNIŠKE VAJE – Frame 2D REZULTATI: NASTAVITEV IZPISA /Tools/Output Settings/ PREDOGLED /File/Print Preview/