THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Microwave spectrum of furfuryl alcohol Roman A. Motiyenko, Manuel Goubet, Thérèse R. Huet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
The torsional spectrum of disilane N. Moazzen-Ahmadi, University of Calgary V.-M. Horneman, University of Oulu, Finland.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Physique des Lasers, Atomes et Molécules
HIGH RESOLUTION SPECTROSCOPY USING A TUNABLE THz SYNTHESIZER BASED ON PHOTOMIXING Arnaud Cuisset, Laboratoire de Physico-Chimie de l’Atmosphère, Maison.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
66th OSU International symposium on molecular spectroscopy
GLOBAL FIT ANALYSIS OF THE FOUR LOWEST VIBRATIONAL STATES OF ETHANE: THE 12  9 BAND L. Borvayeh and N. Moazzen-Ahmadi Department of Physics and Astronomy.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
EXAMPLE THE SPECTRUM OF HCl SHOWS A VERY INTENSE ABSORPTION BAND AT 2886 cm -1 AND A WEAKER BAND AT 5668 cm -1. CALCULATE x e, ṽ o, THE FORCE CONSTANT.
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
MILLIMETRE-WAVE SPECTRUM OF ISOTOPOLOGUES OF ETHANOL FOR RADIO-ASTRONOMY Adam Walters, IRAP, Université de Toulouse, UPS-OMP-CNRS, France. Mirko Schäfer,
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Rotational Spectroscopy and Search for Methoxymethanol in the ISM
The microwave spectroscopy of HCOO13CH3 in the second excited state
Microwave and infrared spectra of urethane
The microwave spectroscopy of ground state CD3SH
Isabelle Kleinera and Jon T. Hougenb
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
Isabelle Kleinera and Jon T. Hougenb
An Analysis of the Rotation Spectrum of Acetonitrile (CH3CN) in Excited Vibrational States Christopher F. Neese, James McMillian, Sarah Fortman, Frank.
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Fourier transform microwave spectra of n-butanol and isobutanol
62nd OSU International Symposium on Molecular Spectroscopy WG10
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
INFRARED SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Synchrotron Spectroscopy and Torsional Structure of the
d'Opale, F Dunkerque, France,
The torsional spectrum of doubly deuterated methanol CHD2OH
by William T. S. Cole, James D. Farrell, David J. Wales, and Richard J
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
IR-Spectroscopy Atoms in a molecule are constantly in motion
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Elias M. NEEMAN and Thérèse R. HUET
Holger S. P. Müller, J. C. Pearson, S. Brünken, S. Yu,
Presentation transcript:

THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN. TORSION-ROTATION-VIBRATION EFFECTS IN THE EXCITED STATES OLENA ZAKHARENKO, JUAN-RAMON AVILES MORENO, ROMAN A. MOTIYENKO, THERESE R. HUET Laboratoire PhLAM, UMR8523 CNRS - Université Lille 1, Villeneuve d’Ascq, France.

Volatile organic compounds (VOCs) sources lifetime is short  oxidation and degradation products formation of SOAs  influence on the global climate and human health Antropogenic  100 TgC/yr Natural  1170 TgC/yr Others VOCs Monoterpenes Isoprene Biomass burning Energy use and transfer

Isoprene oxydation products Isoprene C5H8 Methacrolein (MAC) Trans Cis Methyl vinyl ketone (MVK) Reaction with OH /NOx/ O3 Objectives: Analysis of ground state and low lying excited states Study of large amplitude motion (internal rotation of methyl group) Providing required information for analysis of high resolution IR spectra can also originate from primary emissions such as fuel evaporation or combustion (vehicular emissions)

Quantum chemical calculations C3v symmetry group the internal rotation potential function: V α = V 3 2 1−cos3α + V 6 2 1−cos6α V3(CH3) Trans most stable Cis + 1203.7 cm-1 244,20-234,19 E A J.-R. Alives Moreno et al., 69th ISMS, 2014, TI01

Rho-Axis Method (RAM) B > A θRAM Ir (a, b, c→ z, x, y) a= z   Ir IIl PAM (MHz) RAM (MHz) A 8612.39 4510.68 8504.79 B 4403.08 C 2965.33 θRAM 80.8° -9.2° μx 2.67 D 2.77 D μz 0.84 D 0.40 D θRAM ρ Ir (a, b, c→ z, x, y) B > A b = x IIl (a, b, c→ x, z, y) OK PAM to RAM: 𝐴 𝑅𝐴𝑀 = 𝐴 𝑃𝐴𝑀 cos 2 𝜃 𝑅𝐴𝑀 + 𝐵 𝑃𝐴𝑀 sin 2 𝜃 𝑅𝐴𝑀 𝐵 𝑅𝐴𝑀 = 𝐴 𝑃𝐴𝑀 𝑠𝑖𝑛 2 𝜃 𝑅𝐴𝑀 + 𝐵 𝑃𝐴𝑀 𝑐𝑜𝑠 2 𝜃 𝑅𝐴𝑀 𝐶 𝑅𝐴𝑀 = 𝐶 𝑃𝐴𝑀 𝐷 𝑎𝑏 =− 𝐴 𝑃𝐴𝑀 − 𝐵 𝑃𝐴𝑀 cos 𝜃 𝑅𝐴𝑀 sin 𝜃 𝑅𝐴𝑀 𝜇 𝑎 𝜇 𝑏 𝑅𝐴𝑀 = 𝑐𝑜𝑠 𝜃 𝑅𝐴𝑀 𝑠𝑖𝑛 𝜃 𝑅𝐴𝑀 −𝑠𝑖𝑛 𝜃 𝑅𝐴𝑀 𝑐𝑜𝑠 𝜃 𝑅𝐴𝑀 𝜇 𝑎 𝜇 𝑏 𝑃𝐴𝑀 RAM Hamiltonian: 𝑯 𝑹𝑨𝑴 = 𝑯 𝑹 + 𝑯 𝒄𝒅 +𝑯 𝑻 + 𝑯 𝒊𝒏𝒕 , where HR is the rotational Hamiltonian, Hcd the centrifugal distortion Hamiltonian, HT the torsional Hamiltonian, Hint contains higher-order torsional- rotational interaction terms.

Rho-Axis Method (RAM) B > A θRAM Ir (a, b, c→ z, x, y)   Ir IIl PAM (MHz) RAM (MHz) A 8612.39 4510.68 8504.79 B 4403.08 C 2965.33 θRAM 80.8° 9.2° μx 2.67 D 2.77 D μz 0.84 D 0.40 D ρ θRAM Ir (a, b, c→ z, x, y) B > A b = z IIl (a, b, c→ x, z, y) OK PAM to RAM: 𝐴 𝑅𝐴𝑀 = 𝐴 𝑃𝐴𝑀 cos 2 𝜃 𝑅𝐴𝑀 + 𝐵 𝑃𝐴𝑀 sin 2 𝜃 𝑅𝐴𝑀 𝐵 𝑅𝐴𝑀 = 𝐴 𝑃𝐴𝑀 𝑠𝑖𝑛 2 𝜃 𝑅𝐴𝑀 + 𝐵 𝑃𝐴𝑀 𝑐𝑜𝑠 2 𝜃 𝑅𝐴𝑀 𝐶 𝑅𝐴𝑀 = 𝐶 𝑃𝐴𝑀 𝐷 𝑎𝑏 =− 𝐴 𝑃𝐴𝑀 − 𝐵 𝑃𝐴𝑀 cos 𝜃 𝑅𝐴𝑀 sin 𝜃 𝑅𝐴𝑀 𝜇 𝑎 𝜇 𝑏 𝑅𝐴𝑀 = 𝑐𝑜𝑠 𝜃 𝑅𝐴𝑀 𝑠𝑖𝑛 𝜃 𝑅𝐴𝑀 −𝑠𝑖𝑛 𝜃 𝑅𝐴𝑀 𝑐𝑜𝑠 𝜃 𝑅𝐴𝑀 𝜇 𝑎 𝜇 𝑏 𝑃𝐴𝑀 RAM Hamiltonian: 𝑯 𝑹𝑨𝑴 = 𝑯 𝑹 + 𝑯 𝒄𝒅 +𝑯 𝑻 + 𝑯 𝒊𝒏𝒕 , where HR is the rotational Hamiltonian, Hcd the centrifugal distortion Hamiltonian, HT the torsional Hamiltonian, Hint contains higher-order torsional- rotational interaction terms.

THz Spectrometer in Lille Previous study : 7.6 - 25 GHz up to J = 10 only ground state Present study : 150 – 465 GHz up to J = 76 and Ka = 17 ground state + low lying excited energy states J.R. Durig et al. Spectrochimica Acta A 42, 89-103 (1986). M. Suzuki, K. Kozima, J. Mol. Spectrosc. 38, 314-321 (1971). Spectrometer performance: 150 – 990 GHz (was recently extended up to 1.5 THz) frequency multiplication chain output power: 5 µW - 5 mW sensitivity: 10-6 - 10-7 cm-1 Doppler limited resolution measurement accuracy: 30 kHz, 50 kHz, 100 kHz depending on the observed S/N ratio and the frequency range Spectrometer based on solid state sources Pathway - 2.2 m Frequency modulation technique

Spectrum of MAC Examples of the spectrum in frequency range from 150 to 210 GHz. H2O 150 – 465 GHz up to J = 76 and Ka = 17 ground state + low lying excited energy states Dipole moments PAM: μa = 2.67 D and μb = 0.84 D

CH3 torsion Analysis of g.s. Prediction of v27=1 Assignment of v27=1 Global fit of g.s.+ v27=1 Prediction of v27=2 Parameter (v=0 and v27=1 ) cm-1 F 5.51076 fixeda Ρ 0.0279648(41) V3 493.848(24) V6 -33.514(22) A 0.2844277(23) B 0.1501602(25) C 0.9893682(45) ∙10-1 2Dab -0.42266(17) ∙10-1 θRAM -8.737° n 3411 rms(MHz) 0.0319 wrms 0.776 + 19 parameters CH3 barrier (cm-1) Method Trans Cis B3LYP/6-311++G(2df,p) 468 451 M062X/6-311++G(2df,p) 493 516 MP2/AVTZ  501 509 Experimental This work 494  - [1] v=0 [2] IR 444 441 Global fit of the ground state and the first excited torsional state: Up to J, Ka = 76, 17 > 3000 transitions rms = 0.0319 MHz wrms = 0.776 [1] M. Suzuki, K. Kozima, J. Mol. Spectrosc. 38, 314-321 (1971). [2] J.R. Durig et al. Spectrochimica Acta A 42, 89-103 (1986). a the MP2 aug-cc-pVTZ calculations v27 = 2: assignments only for rotational transitions with Ka<5 E: 275,23 – 265,22 E: 274,23 – 264,22

Rotation- vibration interactions Scheme of the lowest vibrational states in s-trans methacrolein.[3] Fermi and c-type Coriolis interactions between v27=2 and v25 = 1 shift of approx. 9.5 cm-1 between observed and predicted v27 = 2-1 cis 1←0 (A,E) trans 1←0 (A,E) ~9.5 cm-1 2←1(E) 2←1(A) 1←0 (A,E) Spectral resolution: 0.1 cm-1 [3] J.R. Durig et al. Spectrochimica Acta A 42, 89-103 (1986).

Scheme of the lowest vibrational states in s-trans methacrolein. Vibrational modes v27 v26 Scheme of the lowest vibrational states in s-trans methacrolein. v27 – methyl torsion v26 – antisymmetric CCC out-of-plane bending vibration (skeletal torsion) v25 – symmetric CCC in-plane bending vibration

Skeletal torsion v26 The anomalous A-E splittings: the splittings of v26 mode are much bigger than these ones of ground state A and E tunneling sublevels are inversed compared to the typical order of transitions in the ground state The anomalous A-E splittings and unusual sequence of A-E transitions in the v26=1 state were explained by kinetic coupling between methyl and skeletal torsional modes

Scheme of the lowest vibrational states in s-trans methacrolein. Kinetic coupling The relative displacements of the atoms for the ν27 and ν26 modes obtained with the MP2 aug-cc-pVTZ calculations   Methyl torsion v27=1 Skeletal torsion v26=1 Atom X Y Z C1 0.00 0.04 0.13 H2 H3 0.15 0.32 C4 -0.05 -0.08 C5 -0.03 H6 0.50 -0.45 H7 0.46 -0.31 -0.38 0.06 0.22 H8 -0.46 0.03 0.38 -0.06 C9 -0.09 -0.17 H10 -0.29 -0.48 O11 0.11 0.12 Scheme of the lowest vibrational states in s-trans methacrolein. Hydrogen atoms of CH3 v27 v26 both normal modes may be represented as a mixture of pure methyl top torsion, and out-of-plane motion of others atoms

Skeletal torsion v26 By reason of inverted sequence of AE splittings ⟹The v26=1 state is assigned as a virtually first excited state of the methyl torsional mode ⟹ Separated fit of the v26 state using RAM Hamiltonian Parameter (v=0 and v27=1 ) cm-1 (v26=1) cm-1 F 5.51076 fixed ρ 0.0279648(41) 0.28253(45) ∙10-1 V3 493.848(24) 626.46(28) A 0.2844277(23) 0.281603(14) B 0.1501602(25) 0.153144(43) C 0.9893682(45) ∙10-1 0.989778(17) ∙10-1 2Dab -0.42266(17) ∙10-1 -0.56178(55) ∙10-1 θRAM -8.737° -11.81° n 3411 1054 rms(MHz) 0.0319 0.0376 wrms 0.776 0.844   + 19 parameters + 8 parameters Fit of the skeletal torsion state: up to J, Ka = 44, 17 1054 transitions rms = 0.0376 MHz wrms = 0.844 fit is purely effective v26

Conclusions analysis of the rotational spectrum of s-trans MAC significant advance in the knowledge on the molecular structure and dynamics, and on the low-lying excited vibrational states determined value of the barrier to internal rotation analyzed the first excited vibrational state of the skeletal torsional mode ν26 Provided information for analysis of high resolution infrared spectrum

THANK YOU FOR YOUR ATTENTION Support from the CaPPA project (Chemical and Physical Properties of the Atmosphere) is acknowledged. CaPPA is funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract "ANR-11-LABX-0005-01" and by the Regional Council “ Nord-Pas de Calais » and the  "European Funds for Regional Economic Development (FEDER)