Monitoring current changes in precipitation and Earth’s radiative energy balance using satellite data, reanalyses and models Richard P. Allan1 | Viju.

Slides:



Advertisements
Similar presentations
WGCM CFMIP/IPCC Climate Sensitivity Meeting, Exeter, April 2004 Decadal Variability in Water Vapour Richard Allan, Tony Slingo Environmental Systems Science.
Advertisements

© University of Reading Chapman Conference on Atmospheric Water Vapor and Its Role in Climate Tropospheric Water Vapour and.
University of Reading Improved understanding of how rainfall responds to a warming world Richard Allan Environmental Systems.
University of Reading 2007www.nerc-essc.ac.uk/~rpa Monitoring satellite observations and model simulations of changes in the atmospheric.
Current Changes in the Tropical Precipitation and Energy Richard P. Allan Department of Meteorology, University of Reading Thanks to Brian Soden, Viju.
IRS2004, Busan, August 2004 Using Satellite Observations and Reanalyses to Evaluate Climate and Weather Models Richard Allan Environmental Systems Science.
Current Changes in Tropical Precipitation Richard P. Allan Department of Meteorology, University of Reading Thanks to Brian Soden, Viju John, William Ingram,
© University of Reading 2009 EUMETSAT Monitoring changes in precipitation and radiative energy using satellite data and.
University of Reading 2007www.nerc-essc.ac.uk/~rpa Present day changes in tropical precipitation extremes in models and observations.
© University of Reading Monitoring and understanding current changes in the global energy & water cycles Richard Allan.
3) Empirical estimate of surface longwave radiation Use an empirical estimate of the clear-sky surface downward longwave radiation (SDLc) to estimate the.
Current Changes in the Global Water Cycle Richard P. Allan Department of Meteorology, University of Reading Thanks to Brian Soden, Viju John, William Ingram,
Contrasting Precipitation Responses to Warming: Models and Satellite Data Richard P. Allan 1 and Brian J. Soden 2 1 Environmental Systems Science Centre,
Changes in clear-sky longwave radiative cooling in the atmosphere Richard Allan Environmental Systems Science Centre, University of Reading,
NCAS-Climate Talk 15 th January 2010 Current Changes in the Global Water Cycle Richard P. Allan Diffusing slowly to Met Department/NCAS-Climate from ESSC.
Links Between Clear-sky Radiation, Water Vapour and the Hydrological Cycle Richard P. Allan 1, Viju O. John 2 1 Environmental Systems Science Centre, University.
Implications of trends and variability in low-level water vapour Richard P. Allan Department of Meteorology/NCAS climate, University of Reading Thanks.
Atmospheric clear-sky longwave radiative cooling and precipitation Richard Allan Environmental Systems Science Centre, University of Reading, UK.
ESSC Seminar, October 18, 2007© University of Reading 2007www.reading.ac.uk Intensification of the tropical hydrological cycle? Richard P. Allan Environmental.
Trends in Water Cycle meeting, Paris, November 2004 Cloud and water vapour variability: models, reanalyses and observations Richard P. Allan and Tony Slingo.
University of Reading 2007www.nerc-essc.ac.uk/~rpa Observed and simulated changes in water vapour, precipitation and the clear-sky.
Changes in Water Vapour, Clear-sky Radiative Cooling and Precipitation
IPCC Workshop on Climate Sensitivity, Paris, July 2004 Exploiting observations of water vapour to investigate simulations of water vapour feedback processes.
Exploiting observations to seek robust responses in global precipitation Richard P. Allan Department of Meteorology, University of Reading Thanks to Brian.
The atmospheric hydrological cycle and climate feedbacks: recent advances Richard P. Allan Department of Meteorology, University of Reading Thanks to Brian.
World weather news st March Worst drought in decades in N China Ongoing La Niña Cold Sea Surface Temperatures 1 st March Landslides follow heavy.
Richard P. Allan 1 | Brian J. Soden 2 | Viju O. John 3 | Igor I. Zveryaev 4 Department of Meteorology Click to edit Master title style Water Vapour (%)
Weird weather – is this the new normal ? Dr Richard Department of Meteorology/National Centre for Atmospheric.
© University of Reading Chapman Conference on Atmospheric Water Vapor and Its Role in Climate Tropospheric Water Vapour and.
© University of Reading Hadley Centre Workshop: Improving predictions of the large- scale hydrological cycle Agreement/discrepancies.
WP3 outcomes: Observed changes in the global water cycle and metrics Richard P. Allan ; Chunlei Liu University of Reading, Department.
LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT Copyright University of Reading AIR-SEA FLUXES FROM ATMOSPHERIC REANALYSES Richard Allan.
Heating of Earth's climate continues in the 2000s based upon satellite data and ocean observations Richard P. Allan 1, N. Loeb 2, J. Lyman 3, G. Johnson.
PAGODA WP3 - Observed changes in the global water cycle Richard P. Allan, Chunlei Liu Department of Meteorology/NCAS Climate, University.
1 Changes in global net radiative imbalance Richard P. Allan, Chunlei Liu (University of Reading/NCAS Climate); Norman Loeb (NASA Langley); Matt.
A Changing Character of Precipitation in a Warming World: Physical Drivers Richard Allan Department of Meteorology, University of Reading
Additional CLIVAR meeting slides Richard P. Allan – University of Reading.
© University of Reading 2011www.reading.ac. uk Tracking Earth’s Energy since 2000 Richard Allan University of Reading/NCAS climate Collaborators: Norman.
LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT Copyright University of Reading CURRENT CHANGES IN EARTH’S ENERGY IMBALANCE
Current changes in precipitation and moisture Richard P. Allan, Chunlei Liu, Matthias Zahn Department of Meteorology, University of Reading Thanks to George.
Tracking Earth’s Net Energy Imbalance since 2000 Richard Allan University of Reading/NCAS climate.
The importance of upper tropospheric water and cloud for climate change Richard P. Allan Department of Meteorology/NCAS Climate, University of Reading.
Climate change and meteorological drivers of widespread flooding in the UK EA/Defra/NRW Research and Development (R&D) project board meeting, London, March.
Sensitivity of precipitation extremes to ENSO variability
Current and future changes in precipitation and its extremes
Reanalyzed Clouds, Precipitation, TOA and Surface Radiation Budgets: A Global Satellite Comparison and a Regional Study at Two ARM Locations Erica Dolinar,
Current Changes in Earth’s Energy Imbalance and the Global Water Cycle
Radiative biases in Met Office global NWP model
Current changes in Earth’s ENERGY imbalance
Dust, vapour & cloud in greenhouse Earth
Richard P. Allan, Matthias Zahn
Global hydrological forcing: current understanding
Current and future changes in the global water cycle
Richard P.
Department of Meteorology/NCAS, University of Reading
Observed and Simulated Decadal Variability in Clouds and Water Vapour Richard Allan, Tony Slingo Environmental Systems Science Centre, University of Reading.
Understanding Current Observed Changes in the Global Water Cycle
Climate change and the global water cycle
Changes in global net radiative imbalance
Current global and regional changes in atmospheric water vapour
Project Title: The Sensitivity of the Global Water and Energy Cycles:
New energy budget estimates at top of Earth’s atmosphere and surface
How and why is rainfall changing across the globe?
Changes in surface climate of the tropical Pacific
Global energy and water cycle group
Changes in surface climate of the tropical Pacific
Richard Allan ESSC, Reading University Mark Ringer
Climate change and the global water cycle
Environmental Systems Science Centre, University of Reading
Richard Allan, Emily Black, Chunlei Liu
Presentation transcript:

Monitoring current changes in precipitation and Earth’s radiative energy balance using satellite data, reanalyses and models Richard P. Allan1 | Viju O. John2 | Brian J. Soden3 1Environmental Systems Science Centre, University of Reading 2Met Office, Fitzroy Road, Exeter, Devon 3Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, USA Email: r.p.allan@reading.ac.uk Web: www.nerc-essc.ac.uk/~rpa R.Allan supported by NERC grant NE/C51785X/1 Monitoring Precipitation Changes Earth’s Energy Balance Deseasonalized anomalies of atmospheric longwave radiative cooling from reanalyses, climate models and satellite products (John et al. 2009) Tropical precipitation variability from a variety of satellite products/models Earth’s radiation balance provides a powerful constraint upon future changes in precipitation (Allen and Ingram, 2002) Assuming energy balance in the atmosphere and little change in sensible heating, precipitation (P) and net radiative cooling (Q) rise with surface temperature (Ts): L=2.5x106 J kg-1 and ρw is the density of water For dQ/dTs ~3 Wm-2K-1, dP/dTs ~0.1 mm day-1K-1 ~3%/K Atmospheric warming enhances clear-sky longwave radiative cooling of the atmosphere to the surface (SNLc) as demonstrated through radiative transfer calculations (below, left) and by analysing output from models, reanalyses and satellite data (below, right) Combining satellite observations with reanalyses and climate models, we examine present day variability and trends in precipitation and its intensity, linking these changes to Earth’s energy balance Robust findings are: An increase in frequency of intense rainfall with warming Increased precipitation in moist tropical regions Declining precipitation in the descending branches of the Hadley circulation Discrepancies remain: variability and trends in precipitation vary widely across the satellite datasets and are generally of larger magnitude than in models Temperature (K) Water Vapour (mm) TOA (LW) SFC (LW) ATM (LW) ATM (SW) Allan (2009) The sensitivity of Precipitation (P) to sea surface temperature (SST) over the tropical oceans is highly dependent upon satellite datasets, model experiment and time period chosen (John et al. 2009). The tendency for convective regions to become wetter while dry, descending regimes become drier is robust but generally of smaller magnitude in the models compared with satellite data. TRMM Warming Increased Moisture ~7%/K More Intense Precipitation Enhanced Radiative Cooling Mean Rainfall rises ~3%/K Changing Character of Precipitation Trenberth et al., 2003 Intense rainfall rises faster than the mean: declining amount/frequency elsewhere. Reanalyses/Obs AMIP3 CMIP3 CMIP3 volc ERA40 NCEP SRB “SSM/I” Heavy rain follows moisture (~7%/K) Mean Precipitation linked to radiation balance (~3%/K) Light Precipitation (-?%/K) Temperature  Precipitation  Trends: The Rich Get Richer Precipitation Extremes CMIP3 models GPCP Precipitation Changes (mm/day) Consistent with theory, models simulate an increase in rainfall over moist, tropical regions and drying in the already dry descending branches of the Hadley circulation. However, satellite products based on SSM/I (such as GPCP) display trends more pronounced than simulated by the models (Allan and Soden, 2007). Inadequacies in the observing system and the reanalysis fields contribute to this discrepancy (below). descent ascent Satellite data from SSM/I (A) over the tropical oceans indicate warmer months are associated with a higher frequency of intense rainfall, consistent with climate model simulations (B). Agreement for lighter rainfall is poor. For details, see Allan and Soden, 2008. Less frequent More frequent Frequency of Precipitation Understanding discrepancies between precipitation trends in models and observations: Increased low level moisture fuels convective and large-scale precipitation, leading to more intense rainfall We test this prediction using daily precipitation from climate models and SSM/I data from Wentz et al. (2007) It is not clear how the nature of precipitation will evolve in a warming world (O’Gorman & Schneider, 2009) Models struggle to capture the probability distribution of present day precipitation events (Wilcox and Donner, 2007) GPCP Tropical Ocean Trends in Precipitation (P) are sensitive to the vertical motion threshold (ω) and the reanalysis product chosen to define regions of ascent and descent. Using ERA Interim rather than NCEP vertical motion fields approximately halves the magnitude of the drying trend in descent regions. References: Allan, RP, J Clim 22 (11) p3127 (2009) Allan, RP, BJ Soden, Geophys..Res.Lett. 34 (2007) Allan, RP, BJ Soden, Science 321 p1481 (2008) Allen, MR, WJ Ingram, Nature 419 p224 (2002) John, VO, RP Allan and BJ Soden, Geophys. Res. Lett. 36 (2009) O’Gorman, PA, T Schneider, J Clim submitted (2009) Trenberth, KE et al. , Bull. Am. Meteorol. Soc. 84 p1205 (2003) Wentz, FJ et al., Science 317, 233 (2007) Wilcox EM and LJ Donner, J Clim. 20, p53 (2007) Precipitation trend (%/decade)