Inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 5 – Introduction to C (pt 3) C Memory Management 2010-01-29 Lecturer SOE Dan Garcia.

Slides:



Advertisements
Similar presentations
CS1061: C Programming Lecture 21: Dynamic Memory Allocation and Variations on struct A. O’Riordan, 2004, 2007 updated.
Advertisements

Kernighan/Ritchie: Kelley/Pohl:
1 Pointers A pointer variable holds an address We may add or subtract an integer to get a different address. Adding an integer k to a pointer p with base.
CS61C L04 Introduction to C (pt 2) (1) Garcia, Fall 2011 © UCB Reference slides You ARE responsible for the material on these slides (they’re just taken.
CS61C L03 Introduction to C (pt 2) (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L05 C Structures, Memory Management (1) Garcia, Spring 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L4 C Memory Management (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #4.
CS61C L3 C Pointers (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L05 Introduction to C (pt 3) (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L3 C Pointers (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #3 – C Strings,
CS61C L06 C Memory Management (1) Garcia, Spring 2008 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C :
CS61C L04 Introduction to C (pt 2) (1) Garcia, Fall 2011 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L06 C Memory Management (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C :
CS 61C L4 Structs (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #4: Strings & Structs
CS61CL L02 Dynamic Storage (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #3 -
CS 61C L03 C Arrays (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #3: C Pointers & Arrays
I just discovered that my iPhone has been quietly watching me; my graph is on the right. There’s an app that can visualize this data quickly, allowing.
CS61C L05 Introduction to C (pt 3) (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L06 C Memory Management (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
1 CS 201 Dynamic Data Structures Debzani Deb. 2 Run time memory layout When a program is loaded into memory, it is organized into four areas of memory.
CS 61C L03 C Pointers (1)Garcia / Patterson Fall 2002 © UCB CS61C - Machine Structures Lecture 3 C pointers  Dan Garcia (
CS61C L3 C Pointers (1) Chae, Summer 2008 © UCB Albert Chae Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #3 – More C intro,
CS61CL L01 Introduction (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #2 - C Pointers.
CS 61C L04 C Pointers (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Prof Ali Javey’s group’s may have found the replacement for Silicon to make transistors. (Silicon will be too expensive and “leaky”.) They can make “fast,
CS 61C L03 C Arrays (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/ CS61C : Machine Structures Lecture #3: C Pointers & Arrays
CS 61C L04 C Structures, Memory Management (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L4 C Pointers (1) Chae, Summer 2008 © UCB Albert Chae Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #4 –C Strings,
CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap.
CMPSC 16 Problem Solving with Computers I Spring 2014 Instructor: Tevfik Bultan Lecture 12: Pointers continued, C strings.
1 C - Memory Simple Types Arrays Pointers Pointer to Pointer Multi-dimensional Arrays Dynamic Memory Allocation.
Dynamic Memory Allocation. Domain A subset of the total domain name space. A domain represents a level of the hierarchy in the Domain Name Space, and.
Topic 3: C Basics CSE 30: Computer Organization and Systems Programming Winter 2011 Prof. Ryan Kastner Dept. of Computer Science and Engineering University.
Topic 4: C Data Structures CSE 30: Computer Organization and Systems Programming Winter 2011 Prof. Ryan Kastner Dept. of Computer Science and Engineering.
1 Lecture07: Memory Model 5/2/2012 Slides modified from Yin Lou, Cornell CS2022: Introduction to C.
MORE POINTERS Plus: Memory Allocation Heap versus Stack.
CMPSC 16 Problem Solving with Computers I Spring 2014 Instructor: Lucas Bang Lecture 11: Pointers.
C Tutorial - Pointers CS 537 – Introduction to Operating Systems.
Instructor: Justin Hsia 6/20/2012Summer Lecture #31 CS 61C: Great Ideas in Computer Architecture C Arrays, Strings, More Pointers.
CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver 1.
CS61C L04 Introduction to C (pt 2) (1) Garcia, Spring 2010 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
Overview Working directly with memory locations is beneficial. In C, pointers allow you to: change values passed as arguments to functions work directly.
Dynamic Allocation in C
EGR 2261 Unit 11 Pointers and Dynamic Variables
Computer Organization and Design Pointers, Arrays and Strings in C
The Beauty and Joy of Computing Lecture #22: Future of Computing
Winter 2009 Tutorial #6 Arrays Part 2, Structures, Debugger
Computer Science 210 Computer Organization
Motivation and Overview
March, 2006 Saeid Nooshabadi
Programming Languages and Paradigms
Dynamic Memory Allocation
CSC 253 Lecture 8.
Instructor Paul Pearce
CSC 253 Lecture 8.
Lecturer SOE Dan Garcia
Computer Science 210 Computer Organization
Pointers, Dynamic Data, and Reference Types
Memory Allocation CS 217.
CS61C - Machine Structures Lecture 4 C Structures Memory Management
Programming in C Pointer Basics.
Hello to Scott Sloan from Superior, WI!
EECE.2160 ECE Application Programming
There is one handout today at the front and back of the room!
Pointers The C programming language gives us the ability to directly manipulate the contents of memory addresses via pointers. Unfortunately, this power.
CS111 Computer Programming
EECE.2160 ECE Application Programming
C Programming - Lecture 5
Pointers, Dynamic Data, and Reference Types
SPL – PS2 C++ Memory Handling.
Presentation transcript:

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 5 – Introduction to C (pt 3) C Memory Management 2010-01-29 Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Apple’s iPad, day 2  After the dust has settled, what do we have? Name causes chuckles & lawsuits (Fujitsu). “Haters” say nothing new, closed system. Greet class apple.com/ipad

Exams & COD book? I prefer “Open book” exam and I DO have COD 4/e I prefer “Open book” exam and I do NOT have COD 4/e I prefer “One study sheet (midterm) and two study sheets (final)” and I DO have COD 4/e I prefer “One study sheet (midterm) and two study sheets (final)” and I do NOT have COD 4/e

Pointers and arrays are virtually same Review Pointers and arrays are virtually same C knows how to increment pointers C is an efficient language, with little protection Array bounds not checked Variables not automatically initialized (Beware) The cost of efficiency is more overhead for the programmer. “C gives you a lot of extra rope but be careful not to hang yourself with it!”

…review… Pointers (1/4) Sometimes you want to have a procedure increment a variable? What gets printed? void AddOne(int x) { x = x + 1; } int y = 5; AddOne( y); printf(“y = %d\n”, y); y = 5

…review… Pointers (2/4) Solved by passing in a pointer to our subroutine. Now what gets printed? void AddOne(int *p) { *p = *p + 1; } int y = 5; AddOne(&y); printf(“y = %d\n”, y); y = 6

But what if what you want changed is a pointer? What gets printed? Pointers (3/4) But what if what you want changed is a pointer? What gets printed? void IncrementPtr(int *p) { p = p + 1; } int A[3] = {50, 60, 70}; int *q = A; IncrementPtr( q); printf(“*q = %d\n”, *q); *q = 50 q A 50 60 70

Solution! Pass a pointer to a pointer, declared as **h Pointers (4/4) Solution! Pass a pointer to a pointer, declared as **h Now what gets printed? void IncrementPtr(int **h) { *h = *h + 1; } int A[3] = {50, 60, 70}; int *q = A; IncrementPtr(&q); printf(“*q = %d\n”, *q); *q = 60 q q A 50 60 70

Dynamic Memory Allocation (1/4) C has operator sizeof() which gives size in bytes (of type or variable) Assume size of objects can be misleading and is bad style, so use sizeof(type) Many years ago an int was 16 bits, and programs were written with this assumption. What is the size of integers now? “sizeof” knows the size of arrays: int ar[3]; // Or: int ar[] = {54, 47, 99} sizeof(ar)  12 …as well for arrays whose size is determined at run-time: int n = 3; int ar[n]; // Or: int ar[fun_that_returns_3()];

Dynamic Memory Allocation (2/4) To allocate room for something new to point to, use malloc() (with the help of a typecast and sizeof): ptr = (int *) malloc (sizeof(int)); Now, ptr points to a space somewhere in memory of size (sizeof(int)) in bytes. (int *) simply tells the compiler what will go into that space (called a typecast). malloc is almost never used for 1 var ptr = (int *) malloc (n*sizeof(int)); This allocates an array of n integers.

Dynamic Memory Allocation (3/4) Once malloc() is called, the memory location contains garbage, so don’t use it until you’ve set its value. After dynamically allocating space, we must dynamically free it: free(ptr); Use this command to clean up. Even though the program frees all memory on exit (or when main returns), don’t be lazy! You never know when your main will get transformed into a subroutine!

Dynamic Memory Allocation (4/4) The following two things will cause your program to crash or behave strangely later on, and cause VERY VERY hard to figure out bugs: free()ing the same piece of memory twice calling free() on something you didn’t get back from malloc() The runtime does not check for these mistakes Memory allocation is so performance-critical that there just isn’t time to do this The usual result is that you corrupt the memory allocator’s internal structure You won’t find out until much later on, in a totally unrelated part of your code!

Arrays not implemented as you’d think void foo() { int *p, *q, x; int a[4]; p = (int *) malloc (sizeof(int)); q = &x; *p = 1; // p[0] would also work here printf("*p:%u, p:%u, &p:%u\n", *p, p, &p); *q = 2; // q[0] would also work here printf("*q:%u, q:%u, &q:%u\n", *q, q, &q); *a = 3; // a[0] would also work here printf("*a:%u, a:%u, &a:%u\n", *a, a, &a); } 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 ... ... ... 40 ? 20 ? 2 ? 3 ? ? 1 a 24 ? p q x unnamed-malloc-space *p:1, p:40, &p:12 *q:2, q:20, &q:16 *a:3, a:24, &a:24 K&R: “An array name is not a variable”

Binky Pointer Video (thanks to NP @ SU)

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta Kid meets giant Texas people exercising zen-like yoga. – Rolf O Kind men give ten percent extra, zestfully, youthfully. – Hava E Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. – Gary M Kindness means giving, teaching, permeating excess zeal yourself. – Hava E Killing messengers gives terrible people exactly zero, yo Kindergarten means giving teachers perfect examples (of) zeal (&) youth Kissing mediocre girls/guys teaches people (to) expect zero (from) you Kinky Mean Girls Teach Penis-Extending Zen Yoga Kissing Mel Gibson, Tom Petty exclaimed: “Zesty, yo!” – Dan G Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

Peer Instruction Which are guaranteed to print out 5? I: main() { int *a-ptr = (int *)malloc(int); *a-ptr = 5; printf(“%d”, *a-ptr); } II:main() { int *p, a = 5; p = &a; ... /* code; a,p NEVER on LEFT of = */ printf(“%d”, a); } Answer: 2: III only I fails for TWO reasons. You can’t use “-” in names of variables and you didn’t allocate int storage! II fails because a subroutine could be called with a pointer to a (e.g., p) which changes a, or someone else could point at a or p and change it. I II a) - - b) - YES c) YES - d) YES YES e) No idea

Use handles to change pointers Create abstractions with structures “And in Conclusion…” Use handles to change pointers Create abstractions with structures Dynamically allocated heap memory must be manually deallocated in C. Use malloc() and free() to allocate and deallocate memory from heap.

Reference slides You ARE responsible for the material on these slides (they’re just taken from the reading anyway) ; we’ve moved them to the end and off-stage to give more breathing room to lecture!

C structures : Overview A struct is a data structure composed from simpler data types. Like a class in Java/C++ but without methods or inheritance. struct point { /* type definition */ int x; int y; }; void PrintPoint(struct point p) { printf(“(%d,%d)”, p.x, p.y); } struct point p1 = {0,10}; /* x=0, y=10 */ PrintPoint(p1); As always in C, the argument is passed by “value” – a copy is made.

C structures: Pointers to them Usually, more efficient to pass a pointer to the struct. The C arrow operator (->) dereferences and extracts a structure field with a single operator. The following are equivalent: struct point *p; /* code to assign to pointer */ printf(“x is %d\n”, (*p).x); printf(“x is %d\n”, p->x);

struct p { char x; int y; }; How big are structs? Recall C operator sizeof() which gives size in bytes (of type or variable) How big is sizeof(p)? struct p { char x; int y; }; 5 bytes? 8 bytes? Compiler may word align integer y

Linked List Example Let’s look at an example of using structures, pointers, malloc(), and free() to implement a linked list of strings. /* node structure for linked list */ struct Node { char *value; struct Node *next; }; Recursive definition!

typedef simplifies the code struct Node { char *value; struct Node *next; }; /* "typedef" means define a new type */ typedef struct Node NodeStruct; … OR … typedef struct Node { struct Node *next; } NodeStruct; … THEN typedef NodeStruct *List; typedef char *String; String value; /* Note similarity! */ /* To define 2 nodes */ struct Node { char *value; struct Node *next; } node1, node2;

Linked List Example /* Add a string to an existing list */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } String s1 = "abc", s2 = "cde"; List theList = NULL; theList = cons(s2, theList); theList = cons(s1, theList); /* or, just like (cons s1 (cons s2 nil)) */ theList = cons(s1, cons(s2, NULL));

Linked List Example /* Add a string to an existing list, 2nd call */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } node: list: "abc" … NULL ? s:

Linked List Example /* Add a string to an existing list, 2nd call */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } list: node: … … ? NULL s: ? "abc"

Linked List Example /* Add a string to an existing list, 2nd call */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } list: node: … … NULL s: ? "abc" "????"

Linked List Example /* Add a string to an existing list, 2nd call */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } list: node: … … NULL s: ? "abc" "abc"

Linked List Example /* Add a string to an existing list, 2nd call */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } list: node: … … NULL s: "abc" "abc"

Linked List Example /* Add a string to an existing list, 2nd call */ List cons(String s, List list) { List node = (List) malloc(sizeof(NodeStruct)); node->value = (String) malloc (strlen(s) + 1); strcpy(node->value, s); node->next = list; return node; } node: … … NULL s: "abc" "abc"