Hiroshi MASUI Kitami Institute of Technology

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
fb19 nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction 1.Motivation 2.Quark-model baryon-baryon interaction fss2.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
The structure of giant resonances in calcium and titanium isotopes. N.G.Goncharova, Iu.A.Skorodumina Skobelzyn Institute of Nuclear Physics, Moscow State.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Bled workshop  -core potentials for light nuclei derived from the quark-model baryon-baryon interaction Y. Fujiwara ( Kyoto) M. Kohno ( Kyushu.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Aye Aye Min, Khin Swe Myint, J. Esmaili & Yoshinori AKAISHI August 23, 2011 By Theoretical Investigation for Production of Double-  Hypernuclei from Stopped.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Pairing Correlation in neutron-rich nuclei
Structure of light hypernuclei
May the Strong Force be with you
Description of nuclear structures in light nuclei with Brueckner-AMD
The role of isospin symmetry in medium-mass N ~ Z nuclei
Active lines of development in microscopic studies of
Content of the talk Exotic clustering in neutron-rich nuclei
N. K. Timofeyuk University of Surrey
Tensor optimized shell model and role of pion in finite nuclei
Open quantum systems.
Few-body aspect of hypernuclear physics
Structure and dynamics from the time-dependent Hartree-Fock model
Exotic nuclei beyond 132Sn: where do we stand?
Structure of few-body light Λ hypernuclei
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Yokohama National University Takenori Furumoto
Role of Pions in Nuclei and Experimental Characteristics
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Nuclear Physics, JU, Second Semester,
Kernfysica: quarks, nucleonen en kernen
Nuclear excitations in relativistic nuclear models
Nuclear Forces - Lecture 2 -
Daisuke ABE Department of Physics, University of Tokyo
Pions in nuclei and tensor force
Symmetry energy coefficients and shell gaps from nuclear masses
Cluster and Density wave --- cluster structures in 28Si and 12C---
Neutrino-Nucleus Reactions and Nucleosynthesis
Content of the talk Exotic clustering in neutron-rich nuclei
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Di-nucleon correlations and soft dipole excitations in exotic nuclei
Kazuo MUTO Tokyo Institute of Technology
Department of Physics, Sichuan University
Magnetic dipole excitation and its sum rule for valence nucleon pair
Osaka Institute of Technology
Presentation transcript:

Hiroshi MASUI Kitami Institute of Technology 4th International workshop on “State of the Art in Nuclear Physics” SOTANCP4, May 13-18, 2018, Galveston, USA Role of the tensor force on the proton-neutron correlation in N=Z nuclei Hiroshi MASUI Kitami Institute of Technology Collaborator: Masaaki KIMURA, Hokkaido Univ. SOTANCP4, 13-18 May 2018, Galveston, USA

Proton-neutron with a core nucleus 0d5/2 Core+p+n Picture 0d3/2 Spin-Orbit force: Splitting the orbits Pauli-Principle: Selection rule to the orbits proton-neutron correlation changes due to: SOTANCP4, 13-18 May 2018, Galveston, USA

Correlation of T=0 and T=1 channels Bertsch et al. G. F. Bertsch and Y. Lin,Phys. Rev. C 81, 064320 (2010) T=1 pairing is favored HFB calculation Typical size: Rrms 〜 9 fm Nuclear size Spin-orbit splitting: Large Small Correlation energy: S=0 (T=1) > S=1 (T=0) S=1 (T=0) > S=0 (T=1) SOTANCP4, 13-18 May 2018, Galveston, USA

Correlation of T=0 and T=1 channels Sagawa et al. H. Sagawa, Y. Tanimura and K. Hagino, Phys. Rev. C 87, 034310 (2013) T=1 pairing is favored HF calculation Interaction: pairing-type T=1: T=0: SOTANCP4, 13-18 May 2018, Galveston, USA

For the same correlation energy, We need f=1.4 〜1.7 (Continued) H. Sagawa, Y. Tanimura and K. Hagino, Phys. Rev. C 87, 034310 (2013) Single-Particle Levels L=1 L=3 1. Large S.O. splitting For the same correlation energy, We need f=1.4 〜1.7 2. Different Fermi energy surfaces SOTANCP4, 13-18 May 2018, Galveston, USA

Experimental situation for core+p+n 18F (16O+p+n) 42Sc (40Ca+p+n) 58Cu (56Ni+p+n) 1.04MeV 0.61MeV (T=1) 0.20MeV (T=1) (T=0) (T=0) (T=1) (T=0) SOTANCP4, 13-18 May 2018, Galveston, USA

Three-body calculation with core+p+n An effective interaction model (contact, density-dependent type) Y. Tanimura, H. Sagawa and K. Hagino, PTEP, 2014, 053D02 (2014) ・Inversion of the 1+ - 0+ in 42Sc ・B(M1) value for 18F, 34Cl, 42Sc SOTANCP4, 13-18 May 2018, Galveston, USA

Proton-neutron correlation in Core+p+n model 1+ (S=1, T=0) 0+ (S=0, T=1) 18F 42Sc 0+ (S=0, T=1) 1+ (S=1, T=0) 58Cu S=0 S=1 “Deuteron-type” “Pairing-type” SOTANCP4, 13-18 May 2018, Galveston, USA

Expected scenario “Pairing-type” “Deuteron-type” with tensor force without tensor force 1+ 18F 42Sc 58Cu “Deuteron-type” “Pairing-type” 1+ 58Cu 1+ 18F 1+ 42Sc “Pairing-type” 0+ 0+ SOTANCP4, 13-18 May 2018, Galveston, USA

Role of the Central Force SOTANCP4, 13-18 May 2018, Galveston, USA

“COSM with GEM” Hamiltonian (COSM) Basis function (GEM) Cluster-Orbital Shell Model [1] Center of mass motion is subtracted form the Hamiltonian Recoil term : [1] Y. Suzuki and K. Ikeda, Phys. Rev. C 38, 410 (1988) Basis function (GEM) Gaussian Expansion Method [2] 1 2 Effect of continua is correctly taken into account Gaussian basis r1 r2 core [2] E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003). SOTANCP4, 13-18 May 2018, Galveston, USA

Spatial correlation of the proton and neutron in 18F H. Masui, M. Kimura, Prog. Theor. Exp. Phys. 2016, 053D01 (2016) MN Fold+LS+OCM N-N: Minnesota (Central force) Core-N: Folding + LS + OCM Adjusted to 17O, 17F (5/2+, 1/2+, 3/2+) Continuum SOTANCP4, 13-18 May 2018, Galveston, USA

1+-coupling with the central force Cross-shell conf. 18F 0d3/2: j< (L+2) 0d3/2: j< (L+2) Strong ΔL=0 weak ΔL=2 1s1/2: j’ (L) 1s1/2: j’ (L) 0d5/2: j> (L+2) 0d5/2: j> (L+2) SOTANCP4, 13-18 May 2018, Galveston, USA

Correlation energy of 18F Changing the strength of LS-int. 1+ 0+ 4.96 Ecorr Ecorr 4.67 3.61 3.22 3.10 3.56 ΔL=0 coupling Comp w.f. Comp w.f. SOTANCP4, 13-18 May 2018, Galveston, USA

Correlation energy 18F(1+): (a)+(b) 18F(0+): (a) 18F(1+): (a) SOTANCP4, 13-18 May 2018, Galveston, USA

Magnetic moment of 1+ mL = 0 mS = 0.880 0.811 0.834 0.82 mL = 0.090 For the pure L=0, S=1 case (L=0), S=1 mL = 0 (mN) mS = 0.880 (mN) (mp + mn) (LR=0) Presnt(COSM) Three-body(1) [1] Three-body (2) [2] 0.811 0.834 0.82 (mN) mL = 0.090 (mN) 16O mS = 0.721 (mN) [1] Y. Tanimura, H. Sagawa and K. Hagino, Prog. Theor. Exp. Phys. 2014, 053D02 (2014) [2] Y. Kanada-En'yo and F. Kobayashi, Phys. Rev. C 90, 054332 (2014). SOTANCP4, 13-18 May 2018, Galveston, USA

“Houston, we have a problem” Experiment 18F (16O+p+n) 42Sc (40Ca+p+n) 58Cu (56Ni+p+n) Minnesota 1.00MeV 0.36MeV 0.27MeV “Houston, we have a problem” Experiment 1.04MeV 0.61MeV 0.20MeV SOTANCP4, 13-18 May 2018, Galveston, USA

Correlation in the 1+ states with the central force Cross-shell conf. 0f5/2: j< (L+2) 0d3/2: j< (L+2) 1p1/2: j<‘ (L) ΔL=0 1p3/2: j>‘ (L) ΔL=0 0f5/2: j> (L+2) ΔL=0 1s1/2: j’ (L) ΔL=0 1p1/2: j<‘ (L) 0d5/2: j> (L+2) 0f7/2: j> : (L+2) 1p3/2: j>’ (L) 18F (16O+p+n) 42Sc (40Ca+p+n) 58Cu (56Ni+p+n) Large SPE Large SPE Large SPE NN-corr. (ΔL=0) NN-corr. (ΔL=0) NN-corr. (ΔL=0) SOTANCP4, 13-18 May 2018, Galveston, USA

Role of the Tensor Force SOTANCP4, 13-18 May 2018, Galveston, USA

<VC> <VLS> <VT> --- --- MN 1.00 AV8’ 0.20 0.05 0.75 Theoretical calculation Deuteron VNN: Minnesota (MN) Central VNN: AV8’ Neutron Proton Central Spin-Orbit Tensor Binding Energy: 2.25 MeV Rrms: 1.95 fm Relative Ratio of the expectation values <VC> <VLS> <VT> S-wave: 0.942 --- --- MN 1.00 D-wave: 0.058 AV8’ 0.20 0.05 0.75 SOTANCP4, 13-18 May 2018, Galveston, USA

1+-coupling with the tensor force 0d3/2: j< (L+2) 0d3/2: j< (L+2) ΔL=0 Strong ΔL=2 1s1/2: j’ (L) 1s1/2: j’ (L) 0d5/2: j> (L+2) 0d5/2: j> (L+2) EB(18F:1+): 9.72 MeV EB(18F:1+): 9.69 MeV Omit ΔL=2 conf. 9.71 MeV 8.13 MeV Central Central+Tensor Basis function (Lmax=5) SOTANCP4, 13-18 May 2018, Galveston, USA

j< - j’> j> - j’> Inclusion of a tensor interaction to N-N Tensor force for particles in two different orbits j< - j’> Attractive j> - j’> Repulsive T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe and Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005). becomes more important Cross-shell conf. SOTANCP4, 13-18 May 2018, Galveston, USA

Making a nuclear dependence for 1+ DL=2 coupling with the tensor force Cross-shell conf. 0f5/2: j< (L+2) ΔL=2 0d3/2: j< (L+2) 1p1/2: j<‘ (L) 1p3/2: j>‘ (L) ΔL=2 0f5/2: j> (L+2) 1s1/2: j’ (L) 1p1/2: j<‘ (L) 0d5/2: j> (L+2) 0f7/2: j> (L+2) ΔL=2 1p3/2: j>’ (L) 18F (16O+p+n) 42Sc (40Ca+p+n) 58Cu (56Ni+p+n) SPE Small SPE Large SPE NN-corr. (ΔL=0, 2) NN-corr. (ΔL=2) NN-corr. (ΔL=0, 2) Attractive Less-attractive SOTANCP4, 13-18 May 2018, Galveston, USA

Effective N-N interaction Tensor force with the spin-isospin dependence “Wigner” “Majonara” “Bartlett” “Heisenberg” Direct Particle ex. Spin ex. Isospin ex. “Volkov No.2 potential” A. B. Volkov, Nucl. Phys. 74, 33 (1965). SOTANCP4, 13-18 May 2018, Galveston, USA

Tensor force SOTANCP4, 13-18 May 2018, Galveston, USA

Hasegawa-Nagata (Central) Furutani (Tensor) Minnesota (Central) Hasegawa-Nagata (Tensor) Volkov No.2 (Central) SOTANCP4, 13-18 May 2018, Galveston, USA

NN-Potential 0+, 1+: 1+ 0+ 0+ 18F 1+ -7.79MeV -8.79MeV -8.79MeV SOTANCP4, 13-18 May 2018, Galveston, USA

SOTANCP4, 13-18 May 2018, Galveston, USA

Deuteron-like correlation with Volkov No.2 without tensor force with tensor force 1+ 18F 42Sc 58Cu “Deuteron-type” “Pairing-type” 1+ 18F 1+ 58Cu 1+ 42Sc “Pairing-type” 0+ 0+ SOTANCP4, 13-18 May 2018, Galveston, USA

Matrix element of NN-int. (MeV) Minnesota Volkov No.2 + Tensor 18F 42Sc 58Cu 18F 42Sc 58Cu 1+ -7.94 -3.51 -4.10 1+ -9.50 -3.92 -5.83 0+ -4.77 -2.24 -2.98 0+ -5.00 -3.34 -3.42 (0+ - 1+) 3.17 1.17 1.12 (0+ - 1+) 4.50 0.58 2.41 Tensor Central -5.60 -3.90 -2.71 -1.21 -3.63 -2.20 SOTANCP4, 13-18 May 2018, Galveston, USA

Summary Spatial correlation Role of the tensor force Coupling of j>-j< in the same orbit enhances the spatial correlation. The central force plays an essential role to make the coupling of j>-j< in the same orbit. Continua equally contribute to the spatial correlation. Role of the tensor force The level inversion for 1+ and 0+ in 42Sc can be explained by taking the tensor force into the interaction. The coupling j>-j’< in the different orbits plays the key role. SOTANCP4, 13-18 May 2018, Galveston, USA