FUZZY MODEL PREDICTIVE

Slides:



Advertisements
Similar presentations
Graphical Technique of Inference
Advertisements

2008/12/161 Computer Applications in Eng. Mathematics Reporter : Jian-Feng Wu Advisor : Jeng-Tzong Chen Date : December 16, 2008 Coulomb friction.
Numbers
3D Human Body Pose Estimation using GP-LVM Moin Nabi Computer Vision Group Institute for Research in Fundamental Sciences (IPM)
Introduction to Digital Systems Saint-Petersburg State University Faculty of Applied Mathematics – Control Processes Lections 2 ─ 4 prof. Evgeny I. Veremey.
Prediction of Natural Gas Consumption with Feed-forward and Fuzzy Neural Networks N.H. Viet Institute of Fundamental Tech. Research Polish Academy of Sciences.
An Introduction to Algorithmic Information Theory Nuri Taşdemir
Chapter 8. Linear Systems with Random Inputs 1 0. Introduction 1. Linear system fundamentals 2. Random signal response of linear systems Spectral.
Objective 2.01 Test Review Name: Class Period:.
computer
3.1 You should be able to solve one-step equations using algebra. Solve for x.
Math – What is a Function? 1. 2 input output function.
Classroom TA414 Introduction. TA414 classroom There are twelve computers in this classroom. Teacher can use this classroom to teach some courses.
GraphsTablesEquationsVocabularyFunctions.
12-6 Nonlinear Functions Course 2.
Support-Vector Networks C Cortes and V Vapnik (Tue) Computational Models of Intelligence Joon Shik Kim.
Machine Learning in CSC 196K
Section 3.2 Linear Models: Building Linear Functions from Data.
CS654: Digital Image Analysis Lecture 11: Image Transforms.
Gholamreza Anbarjafari, PhD Video Lecturers on Digital Image Processing Digital Image Processing Spatial Domain Filtering: Part I.
12 th international conference on Sciences and Techniques of Automatic control and computer engineering 1 Sousse, Tunisia, December 18-20, 2011 Flatness.
Chapter 10 FUZZY CONTROL Chi-Yuan Yeh.
10-1 人生与责任 淮安工业园区实验学校 连芳芳 “ 自我介绍 ” “ 自我介绍 ” 儿童时期的我.
Computer Hardware. 11 th Class Computer Office Application-1 Computer Hardware Md. Jamirul Islam Assistant Professor Computer Monwara Azmat Ali College,
Etuk, S. O. , Oyefolahan, I. O. , Zubair, H. A, Babakano,F. J
Faster R-CNN – Concepts
Chapter 6 Laplace Transform
Lecture 3: Linear Regression (with One Variable)
Opracowanie językowe dr inż. J. Jarnicki
LESSON 3.
Laplace and Z transforms
Chapter One Introduction to Pipelined Processors
Yahoo Mail Customer Support Number
Most Effective Techniques to Park your Manual Transmission Car
How do Power Car Windows Ensure Occupants Safety
سمینار درس کنترل پیش بین
مراقبت خانواده محور در NICU
Human-level control through deep reinforcement learning
استخراج فلزات 1 آماده‌سازی بار. استخراج فلزات 1 آماده‌سازی بار.
Lecture 4: Discrete-Time Systems
Neural Networks Advantages Criticism
دانشگاه شهیدرجایی تهران
مدل زنجیره ای در برنامه های سلامت
The Science of Predicting Outcome
تعهدات مشتری در کنوانسیون بیع بین المللی
THANK YOU!.
Function Notation “f of x” Input = x Output = f(x) = y.
بسمه تعالی کارگاه ارزشیابی پیشرفت تحصیلی
دومین کمیته مترجمین حاکمیت بالینی دانشگاه
Chapter 3 Convolution Representation
UNIT 5. Linear Systems with Random Inputs
An Introduction to Functions
Thank you.
Thank you.
in Intelligent Tutoring Systems with Fuzzy Logic Techniques
Principles of Computing – UFCFA Lecture-2
Ikumasa Yoshida Tokyo City University
Uses of filters To remove unwanted components in a signal
Part of knowledge base of fuzzy logic expert system for exercise control of diabetics
Predicting Changes in Graphs
CH 6. Stream Ciphers Information Security & IoT Lab 김해용
MODEL DEVELOPMENT FOR HIGH-SPEED RECEIVERS
Data input STATA format EXCEL format Other format.
Control Systems Spring 2016
Digital Signal Processing
Introduction to Functions & Function Notation
Input-Output Stability
State-Variable Description Motivation
Engineering Design Process
Presentation transcript:

FUZZY MODEL PREDICTIVE In the name of God FUZZY MODEL PREDICTIVE BY: M. Charehsaz FACULTY ADVISOR: Dr.F.Touhid khah 1

Out lines: Introduction FMPC in state _space FDMC Case study

Introduction:

Introduction:

Introduction: Using nonlinear model Only input and output process data Lower computational Robustness

Introduction:

Branch_and_bound method

Linearization of TS model

Linearization of TS model

Linearization of TS model

Linearization of TS model

Case study

Case study

Case study

Case study

Multi_step linearization

Multi_step linearization

Fuzzy convolution model

Fuzzy convolution model

FDMC

Case study

Thank you for your attention Any Question?