Skeletonized Wave-equation Inversion for Q

Slides:



Advertisements
Similar presentations
Multisource Full Waveform Inversion of Marine Streamer Data with Frequency Selection Multisource Full Waveform Inversion of Marine Streamer Data with Frequency.
Advertisements

Using 3D Seismic Imaging for Mine and Mineral Exploration G. Schuster University of Utah.
Multi-source Least-squares Migration with Topography Dongliang Zhang and Gerard Schuster King Abdullah University of Science and Technology.
Computational Challenges for Finding Big Oil by Seismic Inversion.
Multi-source Least Squares Migration and Waveform Inversion
First Arrival Traveltime and Waveform Inversion of Refraction Data Jianming Sheng and Gerard T. Schuster University of Utah October, 2002.
Finite-Frequency Resolution Limits of Traveltime Tomography for Smoothly Varying Velocity Models Jianming Sheng and Gerard T. Schuster University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Reduced-Time Migration of Converted Waves David Sheley and Gerard T. Schuster University of Utah.
Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek *, P. Routh *, B. Macy *, W. Cao, and G. T. Schuster * ConocoPhillips.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
CROSSWELL IMAGING BY 2-D PRESTACK WAVEPATH MIGRATION
Improve Migration Image Quality by 3-D Migration Deconvolution Jianhua Yu, Gerard T. Schuster University of Utah.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Finite-Frequency Resolution Limits of Traveltime Tomography for Smoothly Varying Velocity Models Jianming Sheng and Gerard T. Schuster University of Utah.
Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah.
Youli Quan & Jerry M. Harris
Fresnel-zone Traveltime Tomo. for INCO and Mapleton Data Fresnel-zone Traveltime Tomo. for INCO and Mapleton Data Jianming Sheng University of Utah Feb.
Applications of Time-Domain Multiscale Waveform Tomography to Marine and Land Data C. Boonyasiriwat 1, J. Sheng 3, P. Valasek 2, P. Routh 2, B. Macy 2,
Demonstration of Super-Resolution and Super-Stacking Properties of Time Reversal Mirrors in Locating Seismic Sources Weiping Cao, Gerard T. Schuster, Ge.
Multisource Least-squares Reverse Time Migration Wei Dai.
3D Tomography using Efficient Wavefront Picking of Traveltimes Abdullah AlTheyab and G. T. Schuster King Abdullah University of Science and Technology.
Making the Most from the Least (Squares Migration) G. Dutta, Y. Huang, W. Dai, X. Wang, and Gerard Schuster G. Dutta, Y. Huang, W. Dai, X. Wang, and Gerard.
Angle-domain Wave-equation Reflection Traveltime Inversion
Mitigation of RTM Artifacts with Migration Kernel Decomposition Ge Zhan* and Gerard T. Schuster King Abdullah University of Science and Technology June.
Imaging Normal Faults in Alluvial fans using Geophysical Techniques: Field Example from the Coast of Aqaba, Saudi Arabia Sherif M. Hanafy 28 October 2014.
Least-squares Migration and Least-squares Migration and Full Waveform Inversion with Multisource Frequency Selection Yunsong Huang Yunsong Huang Sept.
Coherence-weighted Wavepath Migration for Teleseismic Data Coherence-weighted Wavepath Migration for Teleseismic Data J. Sheng, G. T. Schuster, K. L. Pankow,
Subwavelength Imaging using Seismic Scanning Tunneling Macroscope Field Data Example G. Dutta, A. AlTheyab, S. Hanafy, G. Schuster King Abdullah University.
Impact of MD on AVO Inversion
Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics G. Schuster, X. Wang, Y. Huang, C. Boonyasiriwat King Abdullah University Science &
Multiples Waveform Inversion
Moveout Correction and Migration of Surface-related Resonant Multiples Bowen Guo*,1, Yunsong Huang 2 and Gerard Schuster 1 1 King Abdullah University of.
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Reverse Time Migration of Prism Waves for Salt Flank Delineation
A Blind Test of Traveltime and Waveform Inversion Colin A. Zelt 1, R. Gerhard Pratt 2, Andrew Brenders 2, Sara Hanson-Hedgecock 1 and John A. Hole 3 1.
Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **
Super-virtual Interferometric Diffractions as Guide Stars Wei Dai 1, Tong Fei 2, Yi Luo 2 and Gerard T. Schuster 1 1 KAUST 2 Saudi Aramco Feb 9, 2012.
Interferometric Traveltime Tomography M. Zhou & G.T. Schuster Geology and Geophysics Department University of Utah.
G. Schuster, S. Hanafy, and Y. Huang, Extracting 200 Hz Information from 50 Hz Data KAUST Rayleigh Resolution ProfileSuperresolution Profile Sinc function.
Wave-Equation Waveform Inversion for Crosswell Data M. Zhou and Yue Wang Geology and Geophysics Department University of Utah.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
Benefits & Limitations of Least Squares Migration W.Dai,D.Zhang,X.Wang,GTSKAUST RTM Least Squares RTM GOM RTM GOM LSRTM.
Continuous wavelet transform of function f(t) at time relative to wavelet kernel at frequency scale f: "Multiscale reconstruction of shallow marine sediments.
Waveform tomography and non-linearity  L  38 m N s = 101 N r = 101  10 m 30 m 21 m10.5 m.
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
Papia Nandi-Dimitrova Education Rice University, PhD Geophysics 2012-Present University of Wyoming, MS Geophysics2005 University of Illinois, Urbana-Champaign.
The Boom and Bust Cycles of Full Waveform Inversion: Is
LSM Theory: Overdetermined vs Underdetermined
HOCIGs and VOCIGs via Two-way Reverse Time Migration
Overview of Geophysical Research Research
Making the Most from the Least (Squares Migration)
17-Nov-18 Parallel 2D and 3D Acoustic Modeling Application for hybrid computing platform of PARAM Yuva II Abhishek Srivastava, Ashutosh Londhe*, Richa.
4D Interferometric Traveltime Tomography
Skeletonized Wave-Equation Surface Wave Dispersion (WD) Inversion
Wave Equation Traveltime Inversion
Efficient Multiscale Waveform Tomography and Flooding Method
Interferometric Least Squares Migration
The FOCI method versus other wavefield extrapolation methods
Overview of Multisource and Multiscale Seismic Inversion
Initial analysis and comparison of the wave equation and asymptotic prediction of a receiver experiment at depth for one-way propagating waves Chao Ma*,
Least-squares Reverse Time Migration with Frequency-selection Encoding for Marine Data Wei Dai, WesternGeco Yunsong Huang and Gerard T. Schuster, King.
Overview of Multisource and Multiscale Seismic Inversion
PS, SSP, PSPI, FFD KM SSP PSPI FFD.
King Abdullah University of Science and Technology
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Chaiwoot Boonyasiriwat
Inverse Crimes d=Lm m=L-1 d Red Sea Synthetics
Machine Learning and Wave Equation Inversion of Skeletonized Data
Wave Equation Dispersion Inversion of Guided P-Waves (WDG)
Presentation transcript:

Skeletonized Wave-equation Inversion for Q Gaurav Dutta and Gerard T. Schuster* Department of Earth Science & Engineering King Abdullah University of Science and Technology October 18, 2016

Outline Motivation Theory of WQ Numerical Examples Limitations Predicted Observed 𝑓 𝑜𝑏𝑠 𝑓 𝑐𝑎𝑙𝑐 Motivation Theory of WQ Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions

Outline Motivation Theory of WQ Numerical Examples Limitations Synthetic Data Examples Field Data Example Limitations Conclusions

Motivation for Q Compensation Offshore Brunei (Gamar et al., 2015)

Motivation for Q compensation North Sea (Valenciano and Chemingui, 2012)

Motivation for Q Compensation Offshore Brazil (Zhou et al., 2011)

Motivation for Q Compensation Problem: FWI Q(x,y,z) not robust Solution: Skeletonized Inversion for Q Predicted Observed Frequency (Hz) Amp. Spectrum Predicted Observed Time Δf 𝜖= 1 2 𝑠 𝑟 Δ𝑓 2 e= Y. Quan & Jerry Harris, 1997, Seismic attenuation tomography using the frequency shift method

Outline Theory of WQ Motivation Numerical Examples Limitations Synthetic Data Examples Field Data Example Limitations Conclusions

FWI vs Skeletal Inversion FWI vs Skeletal Inversion True Q Model Q Observed Traces vs Predicted Traces 200 d(t) 2 time e=||dpred - dobs ||2 vs Model Z (km) 80 FWI gets stuck in local minima e 4 local minima 40 1 2 3 X (km) Model

FWI vs Skeletal Inversion FWI vs Skeletal Inversion Observed vs Predicted Spectra True Q Model Q Skeletal data = Peak Frequency 200 D(f) 2 fpred 80 fobs Frequency (Hz) Z (km) e=||fpred - fobs ||2 vs Model Skeletal inversion = rapid convergence 4 e global minima 40 1 2 3 X (km) Model

Similarities with Wave-equation Traveltime Inversion Wave-equation traveltime tomography (Luo and Schuster, 1991; Woodward 1992) Properties Wave-equation Q tomography (Dutta and Schuster, 2016) 𝜖= 1 2 𝑠 𝑟 Δ𝜏 𝒙 𝑟 , 𝒙 𝑠 2 Misfit function: 𝜖= 1 2 𝑠 𝑟 Δ𝑓 𝒙 𝑟 , 𝒙 𝑠 2 Δ𝜏 Predicted Observed Δf 𝜕𝜖 𝜕𝑐(𝒙) =− 𝑠 𝑟 𝜕Δ𝜏 𝜕𝑐 𝒙 Δ𝜏( 𝒙 𝑟 , 𝒙 𝑠 ) Gradient: 𝜕𝜖 𝜕𝑄(𝒙) =− 𝑠 𝑟 𝜕Δ𝑓 𝜕𝑄 𝒙 Δ𝑓( 𝒙 𝑟 , 𝒙 𝑠 )

Wave-equation Q Tomography There are 3 steps in WQ: 1) Misfit function 𝜖: 𝜖= 1 2 𝑠 𝑟 Δ𝑓 𝒙 𝑟 , 𝒙 𝑠 2 Δ𝑓= 𝑓 𝑐𝑎𝑙𝑐 ( 𝒙 𝑟 , 𝒙 𝑠 )− 𝑓 𝑜𝑏𝑠 ( 𝒙 𝒓 , 𝒙 𝑠 ) 𝜕𝜖 𝜕𝑄(𝒙) =− 𝑠 𝑟 𝜕Δ𝑓 𝜕𝑄 𝒙 Δ𝑓( 𝒙 𝑟 , 𝒙 𝑠 ) Δ𝑓 2) Frechet Derivative : df/dQ = We know dP/dQ from wave equation 3) Gradient: Q(k+1) = Q(k) - a 𝜕𝜖 𝜕𝑄 . Smear frequency-shift residuals along wavepaths Wave-equation Q tomography (Dutta and Schuster, 2016)

Viscoacoustic Wave Equation SLS Model Time-domain visco-acoustic wave equation: 𝜕𝑃 𝜕𝑡 +𝐾 𝜏+1 𝛻⋅𝒗 + 𝑟 𝑝 =𝑓( 𝒙 𝑠 ,𝑡) 𝜕𝒗 𝜕𝑡 + 1 𝜌 𝛻𝑃=0 𝜕 𝑟 𝑝 𝜕𝑡 + 1 𝜏 𝜎 𝑟 𝑝 +𝜏𝐾 𝛻⋅𝒗 =0 𝑃= Pressure 𝒗= Particle velocity 𝑟 𝑝 = Memory variable 𝜏 𝜖 , 𝜏 𝜎 = Strain/Stress relaxation times 𝜏 𝜎 = 1+ 1 𝑄 2 − 1 𝑄 𝜔 𝜏 𝜖 = 1+ 1 𝑄 2 + 1 𝑄 𝜔 = 2 𝑄 1 𝑄 + 1+ 1 𝑄 2 𝜏= 𝜏 𝜖 𝜏 𝜎 −1 𝑓= Point-source function

Outline Numerical Examples Motivation Theory of WQ Synthetic Data Examples Field Data Example Limitations Conclusions

Synthetic Example True Q Model Acquisition 60 sources 200 receivers Predicted Observed 𝑓 𝑜𝑏𝑠 𝑓 𝑐𝑎𝑙𝑐 200 2 Z (km) 80 Acquisition 60 sources 200 receivers 𝑓 𝑝𝑒𝑎𝑘 = 15 Hz 4 40 1 2 3 X (km)

Synthetic Example True Q Model WQ Tomogram Q Q 200 200 2 Z (km) 80 80 𝑓 𝑜𝑏𝑠 𝑓 𝑐𝑎𝑙 Δ𝑓 Predicted Observed Synthetic Example True Q Model WQ Tomogram Q Q 200 200 2 Z (km) 80 80 4 40 40 1 2 3 X (km) 1 2 3 X (km)

Synthetic Example True Q Model WQ Tomogram Q 10000 0.5 Z (km) 1.5 20 Q Observed Synthetic Example Predicted True Q Model Q 10000 0.5 Z (km) 1.5 20 WQ Tomogram 0.5 1.5 4 8 12 Z (km) X (km) 20 10000 Q

Standard RTM 1 2 Z (km) 4 8 12 X (km)

Standard LSRTM 1 2 Z (km) 4 8 12 X (km)

Q LSRTM 1 2 Z (km) 4 8 12 X (km)

Standard RTM 1 2 Z (km) 4 8 12 X (km)

Outline Numerical Examples Motivation Theory of WQ Field Data Example Synthetic Data Examples Field Data Example Limitations Conclusions

Crosswell Field Data 183 m 9 m 9 m 3 m 3 m 305 m 293 m Reflector 96 receivers 98 sources Data Sampling: ¼ ms Total Record Length: 0.375 s

Crosswell Field Data Velocity Tomogram Q Tomogram Q 50 100 150 X (m) 30 40 60 70 km/s 2.1 Z (m) 100 200 300 1.9 1.7 1.5 50 100 150 X (m)

Predicted vs Observed Peak Frequencies 4 8 12 Hz 50 100 150 200 Source Index 100 200 300 400 Receiver Index

Crosswell Field Data Standard Migration Q-PSDM Z (m) 100 200 300 50 150 X (m) Standard Migration 50 100 150 X (m) Q-PSDM

Crosswell Field Data Standard Migration Q-PSDM Z (m) 100 200 300 50 150 X (m) 50 100 150 X (m)

Outline Conclusions Conclusions Motivation Theory of WQ Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions Motivation Theory of WQ Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions

Limitations Low-Intermediate Q resolution Velocity-Q ambiguity: Q  time delays Sequential Q and V inversion, or possibly simultaneous Q+V inversion

Outline Conclusions Motivation Theory of WQ Numerical Examples Synthetic Data Examples Field Data Example Limitations Conclusions

Backpropagated weighted residual Conclusions A novel wave-equation Q tomography method is presented. Predicted Observed 𝑓 𝑜𝑏𝑠 𝑓 𝑐𝑎𝑙𝑐 𝜖= 1 2 𝑠 𝑟 Δ𝑓 𝒙 𝑟 , 𝒙 𝑠 2 Δ𝑓= 𝑓 𝑐𝑎𝑙𝑐 ( 𝒙 𝑟 , 𝒙 𝑠 )− 𝑓 𝑜𝑏𝑠 ( 𝒙 𝒓 , 𝒙 𝑠 ) ≈ 𝑠 𝑟 ∫𝑑𝑡 𝛻⋅𝒗(𝒙,𝑡; 𝒙 𝑠 ) 𝑔 𝒙 𝑟 ,−𝑡;𝒙,0 ∗𝑃 𝒙 𝑟 ,𝑡; 𝒙 𝑠 𝑜𝑏𝑠 Δ𝑓( 𝒙 𝑟 , 𝒙 𝑠 ) Gradient: Source Backpropagated weighted residual ∫𝛼 𝑑𝑙=Δ𝑓

Conclusions Inverted Q tomograms ⇒ Improvements in imaging. Standard Migration 1 2 Z (km) 4 8 12 X (km)

Conclusions Inverted Q tomograms ⇒ Improvements in imaging. Q-PSDM 1 2 Z (km) 4 8 12 X (km)

Conclusions Inverted Q tomograms ⇒ Improvements in imaging. Z (m) 100 200 300 50 150 X (m) Standard Migration Q-PSDM

Limitations Low-Intermediate Q resolution Velocity-Q ambiguity Sequential Q and V inversion, or possibly simultaneous Q+V inversion

Acknowledgements SEG for providing this platform. Sponsors of the CSIM consortium. Exxon for the Friendswood data. KAUST Supercomputing Laboratory and IT Research Computing Group.

Motivation for Q Compensation Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 2 4 8 X (km) Z (km) 𝑓 𝑝𝑒𝑎𝑘 =20 Hz

Motivation for Q Compensation Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 2 4 8 X (km) Z (km) 𝑓 𝑝𝑒𝑎𝑘 =20 Hz

Motivation for Q Compensation Problem: Q distorts amplitude and phase of propagating waves. Q=1000 Q=40 Q=20 2 4 8 X (km) Z (km) 𝑓 𝑝𝑒𝑎𝑘 =20 Hz