Lecture 6: Uniprocessor Scheduling(cont.)

Slides:



Advertisements
Similar presentations
Scheduling Criteria CPU utilization – keep the CPU as busy as possible (from 0% to 100%) Throughput – # of processes that complete their execution per.
Advertisements

Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 17 Scheduling III.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Operating Systems CMPSC 473 Processes (contd.) September 09, Lecture 6 Instructor: Sriram Govindan.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 19 Scheduling IV.
Operating Systems Chapter 6
Chap 5 Process Scheduling. Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a.
Chapter 5 CPU Scheduling. CPU Scheduling Topics: Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Operating Systems CPU Scheduling. Agenda for Today What is Scheduler and its types Short-term scheduler Dispatcher Reasons for invoking scheduler Optimization.
CPU Scheduling Algorithms
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
CS 311 – Lecture 23 Outline Kernel – Process subsystem Process scheduling Scheduling algorithms User mode and kernel mode Lecture 231CS Operating.
02/06/2008CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
What we will cover…  CPU Scheduling  Basic Concepts  Scheduling Criteria  Scheduling Algorithms  Evaluations 1-1 Lecture 4.
Chapter 5-CPU Scheduling
02/11/2004CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Basic Concepts Maximum CPU utilization.
Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-3 CPU Scheduling Department of Computer Science and Software Engineering.
CS212: OPERATING SYSTEM Lecture 3: Process Scheduling 1.
Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times.
CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 11/29/2015 Chapter 6: CPU Scheduling l Basic Concepts l Scheduling Criteria l Scheduling Algorithms l Multiple-Processor Scheduling l Real-Time Scheduling.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 5 CPU Scheduling Slide 1 Chapter 5 CPU Scheduling.
1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
CE Operating Systems Lecture 8 Process Scheduling continued and an introduction to process synchronisation.
1 Module 5: Scheduling CPU Scheduling Scheduling Algorithms Reading: Chapter
Basic Concepts Maximum CPU utilization obtained with multiprogramming
1 Lecture 5: CPU Scheduling Operating System Fall 2006.
CPU Scheduling Algorithms CSSE 332 Operating Systems Rose-Hulman Institute of Technology.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 Chapter 5: CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
CPU SCHEDULING.
Chapter 6: CPU Scheduling
Dan C. Marinescu Office: HEC 439 B. Office hours: M, Wd 3 – 4:30 PM.
EEE Embedded Systems Design Process in Operating Systems 서강대학교 전자공학과
Chapter 5a: CPU Scheduling
CPU Scheduling Algorithms
Operating Systems Processes Scheduling.
Chapter 6: CPU Scheduling
Chapter 6: CPU Scheduling
Process management Information maintained by OS for process management
Chapter 5: CPU Scheduling
CPU Scheduling Basic Concepts Scheduling Criteria
CPU Scheduling G.Anuradha
Chapter 6: CPU Scheduling
Lecture 16 Syed Mansoor Sarwar
Module 5: CPU Scheduling
Chapter 5: CPU Scheduling
COT 4600 Operating Systems Spring 2011
Operating System Concepts
Multilevel Queue Scheduling Algorithms
3: CPU Scheduling Basic Concepts Scheduling Criteria
Chapter5: CPU Scheduling
Chapter 5: CPU Scheduling
Chapter 6: CPU Scheduling
Outline Scheduling algorithms Multi-processor scheduling
COT 4600 Operating Systems Fall 2009
Chapter 5: CPU Scheduling
Lecture 2 Part 3 CPU Scheduling
Outline Announcement Process Scheduling– continued
Operating System , Fall 2000 EA101 W 9:00-10:00 F 9:00-11:00
Shortest-Job-First (SJR) Scheduling
Chapter 6: CPU Scheduling
Module 5: CPU Scheduling
Chapter 6: CPU Scheduling
CPU Scheduling: Basic Concepts
Module 5: CPU Scheduling
Presentation transcript:

Lecture 6: Uniprocessor Scheduling(cont.) Advanced Operating System Fall 2012

Contents Uniprocessor scheduling – multilevel queue scheduling

Multilevel Queue Ready queue is partitioned into separate queues: foreground (interactive) background (batch) Each queue has its own scheduling algorithm foreground – RR background – FCFS Scheduling must be done between the queues Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR, 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue A process can move between the various queues; aging can be implemented this way Multilevel-feedback-queue scheduler defined by the following parameters: number of queues scheduling algorithms for each queue method used to determine when to upgrade a process method used to determine when to demote a process method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue Three queues: Q0 – RR with time quantum 8 milliseconds Q1 – RR time quantum 16 milliseconds Q2 – FCFS Scheduling A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2.

End Thank you!