Weiguo Chen, PhD, Umasundari Sivaprasad, PhD, Aaron M

Slides:



Advertisements
Similar presentations
Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity  Laetitia Everaere, PhD, Saliha Ait-Yahia, PhD, Olivier Molendi-Coste,
Advertisements

Exposure to allergen and diesel exhaust particles potentiates secondary allergen- specific memory responses, promoting asthma susceptibility  Eric B. Brandt,
Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides  Rachael A. Mintz-Cole, PhD, Eric.
Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation  Kathrin Straubinger,
IL-4 induces IL-13–independent allergic airway inflammation
Weiguo Chen, MD, PhD, Yasuhiro Tabata, MD, PhD, Aaron M
The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF- like (BATF), regulates lymphocyte- and mast cell–driven immune.
Let-7 microRNA–mediated regulation of IL-13 and allergic airway inflammation  Manish Kumar, MSc, Tanveer Ahmad, MSc, Amit Sharma, PhD, Ulaganathan Mabalirajan,
The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF- like (BATF), regulates lymphocyte- and mast cell–driven immune.
Robert J. Snelgrove, PhD, Lisa G
Umasundari Sivaprasad, PhD, David J. Askew, PhD, Mark B
Interferon response factor 3 is essential for house dust mite–induced airway allergy  Thomas Marichal, DVM, Denis Bedoret, DVM, PhD, Claire Mesnil, DVM,
Selective control of SIRP-α–positive airway dendritic cell trafficking through CD47 is critical for the development of TH2-mediated allergic inflammation 
Expression of IL-4 receptor α on smooth muscle cells is not necessary for development of experimental allergic asthma  Frank Kirstein, PhD, William G.C.
Exposure to allergen and diesel exhaust particles potentiates secondary allergen- specific memory responses, promoting asthma susceptibility  Eric B. Brandt,
Allergen-dependent solubilization of IL-13 receptor α2 reveals a novel mechanism to regulate allergy  Michael O. Daines, MD, Weiguo Chen, PhD, Yasuhiro.
Nazanin Farhadi, MSc, Laura Lambert, BA, Chiara Triulzi, PhD, Peter J
Pentraxin 3 deletion aggravates allergic inflammation through a TH17-dominant phenotype and enhanced CD4 T-cell survival  Jyoti Balhara, MSc, Lianyu Shan,
Compartmentalized chemokine-dependent regulatory T-cell inhibition of allergic pulmonary inflammation  Roshi Afshar, PhD, James P. Strassner, BS, Edward.
IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs  Chien-Chang Chen, PhD, Takao Kobayashi, PhD, Koji Iijima,
Restoration of T-box–containing protein expressed in T cells protects against allergen- induced asthma  Jung Won Park, MD, Hyun Jung Min, MS, Jung Ho Sohn,
Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2- inducing allergen exposures  Matthew J. Gold, BSc, Frann Antignano,
IL-33 induces innate lymphoid cell–mediated airway inflammation by activating mammalian target of rapamycin  Robert J. Salmond, PhD, Ananda S. Mirchandani,
Leukocyte nicotinamide adenine dinucleotide phosphate-reduced oxidase is required for isocyanate-induced lung inflammation  Si-Yen Liu, PhD, Wei-Zhi Wang,
Β-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses  Zhonghua Zhang, MD, Jocelyn.
Allergic airway disease is unaffected by the absence of IL-4Rα–dependent alternatively activated macrophages  Natalie E. Nieuwenhuizen, PhD, Frank Kirstein,
Is 9 more than 2 also in allergic airway inflammation?
Signaling through FcRγ-associated receptors on dendritic cells drives IL-33–dependent TH2-type responses  Melissa Y. Tjota, BA, Cara L. Hrusch, PhD, Kelly.
Activin A and TGF-β promote TH9 cell–mediated pulmonary allergic pathology  Carla P. Jones, PhD, Lisa G. Gregory, PhD, Benjamin Causton, BSc, Gaynor A.
Dendritic cells and alveolar macrophages mediate IL-13–induced airway inflammation and chemokine production  Margaret Crapster-Pregont, BS, Janice Yeo,
Chang Xiao, MD, PhD, Jocelyn M
Prime role of IL-17A in neutrophilia and airway smooth muscle contraction in a house dust mite–induced allergic asthma model  Julie Chesné, PhD, Faouzi.
CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling  Jennifer Kearley, PhD, Douglas S. Robinson,
Experimental gastrointestinal allergy enhances pulmonary responses to specific and unrelated allergens  Eric B. Brandt, PhD, Troy A. Scribner, MD, Hiroko.
Frank Kirstein, PhD, Natalie E
Overexpression of sirtuin 6 suppresses allergic airway inflammation through deacetylation of GATA3  Hyun-Young Jang, PhD, Suna Gu, MS, Sang-Myeong Lee,
Prostaglandin E2 suppresses allergic sensitization and lung inflammation by targeting the E prostanoid 2 receptor on T cells  Zbigniew Zasłona, PhD, Katsuhide.
Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides  Rachael A. Mintz-Cole, PhD, Eric.
IL-2–inducible T-cell kinase modulates TH2-mediated allergic airway inflammation by suppressing IFN-γ in naive CD4+ T cells  Arun K. Kannan, MS, Nisebita.
Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13  Rui He, MD, PhD, Hye Young Kim,
Jethe O. F. Nunes, PhD, Juliana de Souza Apostolico, MSc, David A. G
Regulation of allergic airway inflammation by class I–restricted allergen presentation and CD8 T-cell infiltration  James W. Wells, PhD, Christopher J.
Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation  Tomohiro Takeda, PhD, Hirotoshi Unno, MD, PhD, Hideaki Morita,
Prophylactic and therapeutic inhibition of allergic airway inflammation by probiotic Escherichia coli O83  Christian Zwicker, MSc, Priya Sarate, MSc,
Mast cell–derived plasminogen activator inhibitor type 1 promotes airway inflammation and remodeling in a murine model of asthma  Ara Jo, PhD, Sun H.
Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness  Kiyoshi Hirahara, MD, Masakatsu Yamashita, PhD, Chiaki.
Prostaglandin E2 suppresses allergic sensitization and lung inflammation by targeting the E prostanoid 2 receptor on T cells  Zbigniew Zasłona, PhD, Katsuhide.
Does reduced zona pellucida binding protein 2 (ZPBP2) expression on chromosome 17q21 protect against asthma?  Marina Miller, MD, PhD, Christine Vuong,
Sarita Sehra, PhD, Weiguo Yao, PhD, Evelyn T. Nguyen, MS, Nicole L
Src homology 2 domain–containing inositol 5-phosphatase 1 deficiency leads to a spontaneous allergic inflammation in the murine lung  Sun-Young Oh, PhD,
IL-17A enhances IL-13 activity by enhancing IL-13–induced signal transducer and activator of transcription 6 activation  Sara L. Hall, MS, Theresa Baker,
Recombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge 
Weiguo Chen, PhD, Gurjit K. Khurana Hershey, MD, PhD 
Novel allergic asthma model demonstrates ST2-dependent dendritic cell targeting by cypress pollen  Lucia Gabriele, BS, Giovanna Schiavoni, BS, Fabrizio.
IL-10–treated dendritic cells decrease airway hyperresponsiveness and airway inflammation in mice  Toshiyuki Koya, MD, PhD, Hiroyuki Matsuda, MD, PhD,
Mast cell TNF receptors regulate responses to Mycoplasma pneumoniae in surfactant protein A (SP-A)−/− mice  Bethany J. Hsia, PhD, Julie G. Ledford, PhD,
12/15-Lipoxygenase deficiency protects mice from allergic airways inflammation and increases secretory IgA levels  Amanda R. Hajek, BS, Alexa R. Lindley,
Duy Pham, PhD, Sarita Sehra, PhD, Xin Sun, PhD, Mark H. Kaplan, PhD 
Prostaglandin E receptor subtype EP3 in conjunctival epithelium regulates late-phase reaction of experimental allergic conjunctivitis  Mayumi Ueta, MD,
IL-25 enhances allergic airway inflammation by amplifying a TH2 cell–dependent pathway in mice  Tomohiro Tamachi, MD, Yuko Maezawa, MD, PhD, Kei Ikeda,
Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung  Christina C. Lewis, PhD, Bruce Aronow, PhD, John Hutton, MD,
IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation  Kentaro Takahashi, MD, Koichi.
Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma
MicroRNA-155 is essential for TH2-mediated allergen-induced eosinophilic inflammation in the lung  Carina Malmhäll, BSc, Sahar Alawieh, BSc, You Lu, PhD,
Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation  Takumi Kiwamoto,
Eric B. Brandt, PhD, Melissa K. Mingler, MS, Michelle D
Attila Kiss, MD, Martin Montes, MD, Sarat Susarla, MD, Elin A
Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation  Takumi Kiwamoto,
Recombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge 
TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice  Susumu Nakae, PhD, Carolina Lunderius, PhD,
Presentation transcript:

IL-13 receptor α2 contributes to development of experimental allergic asthma  Weiguo Chen, PhD, Umasundari Sivaprasad, PhD, Aaron M. Gibson, BS, Mark B. Ericksen, BS, Christie M. Cunningham, BS, Stacey A. Bass, Kayla G. Kinker, BS, Fred D. Finkelman, MD, Marsha Wills-Karp, PhD, Gurjit K. Khurana Hershey, MD, PhD  Journal of Allergy and Clinical Immunology  Volume 132, Issue 4, Pages 951-958.e6 (October 2013) DOI: 10.1016/j.jaci.2013.04.016 Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig 1 HDM-induced AHR and airway inflammation in wild-type and IL-13Rα2–deficient mice. Data are shown as means ± SDs. A, APTI of PBS- or HDM-treated wild-type and IL-13Rα2–deficient mice (n = 8-10). B, Total cells and eosinophils in BAL samples of PBS- or HDM-treated wild-type and IL-13Rα2–deficient mice (n = 8-10). KO, IL-13Rα2 deficient; WT, wild type. *P < .05 and ***P < .001. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig 2 HDM-induced AHR and airway inflammation in nontransgenic and memIL-13Rα2 transgenic mice. Mice were sensitized and challenged with PBS or HDM. Data are shown as means ± SDs. A, APTI of PBS- or HDM-treated nontransgenic mice and memIL-13Rα2 transgenic mice (n = 4-5). B, Total cells and eosinophils in BAL samples from PBS- or HDM-treated nontransgenic mice and memIL-13Rα2 transgenic mice (n = 4-5). C, APTI of PBS- or HDM-treated wild-type, IL-13Rα2-deficient, and memIL-13Rα2 transgenic/IL-13Rα2-deficient mice (n = 5-8). D, Serum total IgE levels in PBS- or HDM-treated wild-type, IL-13Rα2-deficient, and memIL-13Rα2 transgenic/IL-13Rα2-deficient mice (n = 5-8). KO, IL-13Rα2-deficient; NTG, nontransgenic; TG, memIL-13Rα2 transgenic; TG/KO, memIL-13Rα2 transgenic/IL-13Rα2-deficient; WT, wild type. *P < .05, **P < .01, and ***P < .001. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig 3 Hematoxylin and eosin staining of lung sections from PBS- or HDM-treated wild-type, IL-13Rα2-deficient, and memIL-13Rα2 transgenic/IL-13Rα2-deficient mice. KO, IL-13Rα2-deficient; TG/KO, memIL-13Rα2 transgenic/IL-13Rα2-deficient; WT, wild type. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig 4 Lung mucus production in HDM-treated wild-type, IL-13Rα2–deficient, and memIL-13Rα2 transgenic/IL-13Rα2-deficient mice. A, PAS staining of lung sections. B and C, Western blot analysis and quantification of CLCA3 expression in lung homogenates (n = 3). Lane 1, WT PBS; lane 2, KO PBS; lane 3, TG/KO PBS; lanes 4 and 5, WT HDM; lanes 6 and 7, KO HDM; lanes 8 and 9, TG/KO HDM. D, mRNA expression of Muc5ac in lungs (n = 9-10). E, Muc5ac levels in BALF (n = 9-10). KO, IL-13Rα2-deficient; ns, not significant; TG/KO, memIL-13Rα2 transgenic/IL-13Rα2-deficient; WT, wild type. Data are shown as means ± SDs. *P < .05, **P < .01, and ***P < .001. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig 5 Lung mRNA expression of cytokines and chemokines in production in HDM-treated wild-type, IL-13Rα2-deficient, and memIL-13Rα2 transgenic/IL-13Rα2-deficient mice. A, IL-13. B, IL-4. C, IFN-γ. D, Eotaxin. E, Macrophage-derived chemokine (MDC). F, Thymus and activation-regulated chemokine (TARC). Data are shown as means ± SDs (n = 4-6). KO, IL-13Rα2-deficient; ns, not significant; TG/KO, memIL-13Rα2 transgenic/IL-13Rα2-deficient; WT, wild type. *P < .05 and **P < .01. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig E1 Characterization of memIL-13Rα2 lung transgenic mice. A, Schematic diagram of the construct for memIL-13Rα2 lung transgenic mice. B, Southern blot analysis of the memIL-13Rα2–hGH transgene in transgenic and nontransgenic mice. The control plasmid was used to estimate transgene copy numbers. C, Northern blot analysis of memIL-13Rα2 expression in the lung. D, RT-qPCR: lung expression of IL-13Rα2. Data are shown as means ± SDs (n = 3). E, ELISA for IL-13Rα2 in lung lysate from memIL-13Rα2 transgenic and nontransgenic mice. Data are shown as means ± SDs (n = 5). *P < .05 and **P < .01. NTG, Nontransgenic; TG, memIL-13Rα2 transgenic. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig E2 Serum HDM-specific IgE in PBS- or HDM-treated memIL-13Rα2 transgenic/IL-13Rα2-deficient mice. Serum HDM-specific IgE levels were determined by using ELISA. KO, IL-13Rα2-deficient; ns, not significant; TG/KO, memIL-13Rα2 transgenic/IL-13Rα2-deficient; WT, wild type. Data are shown as means ± SDs (n = 9-10). Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig E3 Levels of sIL-13Rα2 in PBS- or HDM-treated memIL-13Rα2 transgenic/IL-13Rα2-deficient mice. A, Serum. B, BALF. Data are shown as means ± SDs (n = 4-8). KO, IL-13Rα2-deficient; TG/KO, memIL-13Rα2 transgenic/IL-13Rα2-deficient; WT, wild type. ***P < .001. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig E4 Percentage of IL-13–bound and free IL-13Rα2 in BALF and serum of PBS- or HDM-treated nontransgenic and memIL-13Rα2 transgenic mice (n = 5). A, BALF. B, Serum. NTG, Nontransgenic; TG, memIL-13Rα2 transgenic. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig E5 mRNA expression of IL-13Rα1 and IL-4Rα in lungs of PBS- or HDM-treated IL-13Rα2 transgenic and nontransgenic mice. A-C, Expression of IL-13Rα1, IL-4Rα, and the hGH transgene in lungs of PBS- or HDM-treated memIL-13Rα2 transgenic and nontransgenic mice. D, Relative expression of IL-13Rα2 to IL-13Rα1. Data are shown as means ± SDs (n = 3-5). ***P < .001. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions

Fig E6 IL-13–induced STAT6 activation in lungs from nontransgenic and memIL-13Rα2 transgenic mice. A, Nuclear extracts from lungs of IL-13–treated nontransgenic and memIL-13Rα2 transgenic mice at different time points (1, 2, 4, 8, 16, and 24 hours) were used to assess STAT6 DNA-binding activity by using EMSA. B, Quantification of STAT6 activity. Data are shown as means ± SDs (n = 3). NTG, Nontransgenic; TG, memIL-13Rα2 transgenic. Journal of Allergy and Clinical Immunology 2013 132, 951-958.e6DOI: (10.1016/j.jaci.2013.04.016) Copyright © 2013 American Academy of Allergy, Asthma & Immunology Terms and Conditions