Solving a system of equations by elimination using multiplication.

Slides:



Advertisements
Similar presentations
The student will be able to:
Advertisements

4.3 Systems of Equations - Elimination Objective: The student will be able to: Solve systems of equations using elimination with addition and subtraction.
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
Warm Up What is the LCM of 3x and –4x ? What is the LCM of 5y and 2y ?
Bell Work2/12/15 Solve the system by elimination..
Review
Warm up: Solve using a method of your choice.
3.2 Solving Systems of Equations Algebraically Substitution Method Elimination Method.
Dr. Fowler CCM Solving Systems of Equations By Elimination – Easier.
Ch 5.4 (part 2) Elimination Method (multiplying both equations)
Warm up Add the following polynomials x + 2y = 10 5y – x = 7 + 4x – 3y = 1 + 9y + 4x = -1.
Dr. Fowler CCM Solving Systems of Equations By Elimination – Harder.
Solving Systems of Equations. Solve systems of equations using addition and subtraction.
You sell tickets for admission to your school play and collect a total of $104. Admission prices are $6 for adults and $4 for children. You sold 21 tickets.
5.2: Solving Systems of Equations using Substitution
Solving Systems of Equations using Elimination. Solving a system of equations by elimination using multiplication. Step 1: Put the equations in Standard.
Solving Systems of Equations by Elimination (Addition) Section 3.2, Part II.
Solving Systems Using Elimination
Lesson 7.4A Solving Linear Systems Using Elimination.
What is a system of equations? A system of equations is when you have two or more equations using the same variables. The solution to the system.
Solving Systems of Equations By Elimination. Warm – up!! *As you walk in, please pick up your calculator!!* Use substitution to solve the following systems.
6.2 Solve a System by Using Linear Combinations
Solving Systems of Equations So far, we have solved systems using graphing and substitution. These notes show how to solve the system algebraically using.
Solve Systems of Equations Using Elimination Section 6.3.
SOLVING SYSTEMS USING ELIMINATION 6-3. Solve the linear system using elimination. 5x – 6y = -32 3x + 6y = 48 (2, 7)
Systems of Equations By Substitution and Elimination.
Objective solve systems of equations using elimination.
Solving Systems Using Elimination Section 6-3 Part 2.
Objective The student will be able to: solve systems of equations using elimination with addition and subtraction.
Solving a System of Equations by ELIMINATION. Elimination Solving systems by Elimination: 1.Line up like terms in standard form x + y = # (you may have.
Algebra 2 Solving Systems Algebraically Lesson 3-2 Part 2.
The student will be able to:
The student will be able to:
HW: Maintenance Sheet #21 (19-21) comprehensive Test 7 Friday
Objective I can solve systems of equations using elimination with addition and subtraction.
Solving Systems of Equations
HW: Study for Comprehensive Test #7
Objective I CAN solve systems of equations using elimination with multiplication.
Solve Systems of Equations by Elimination
The student will be able to:
The student will be able to:
Objective The student will be able to: solve systems of equations using elimination with multiplication.
The student will be able to:
REVIEW: Solving Linear Systems by Elimination
The student will be able to:
The student will be able to:
Solving systems of equations
The student will be able to:
Solving Systems of Equations
The student will be able to:
Solving Linear Systems by Linear Combinations (Elimination)
The student will be able to:
The student will be able to:
The student will be able to:
Systems with Three Variables
Solving Systems of Equations
The student will be able to:
The student will be able to:
The student will be able to:
Solving Systems of Equations by Elimination Part 2
Solving Systems of Equations
The student will be able to:
The student will be able to:
The student will be able to:
The student will be able to:
Solving Systems by ELIMINATION
The student will be able to:
The student will be able to:
Step 1: Put the equations in Standard Form. Standard Form: Ax + By = C
The student will be able to:
Presentation transcript:

Solving a system of equations by elimination using multiplication. Step 1: Put the equations in Standard Form. Standard Form: Ax + By = C Step 2: Determine which variable to eliminate. Look for variables that have the same coefficient. Step 3: Multiply the equations and solve. Solve for the variable. Step 4: Plug back in to find the other variable. Substitute the value of the variable into the equation. Step 5: Check your solution. Substitute your ordered pair into BOTH equations.

1) Solve the system using elimination. 2x + 2y = 6 3x – y = 5 Step 1: Put the equations in Standard Form. They already are! None of the coefficients are the same! Find the least common multiple of each variable. LCM = 6x, LCM = 2y Which is easier to obtain? 2y (you only have to multiply the bottom equation by 2) Step 2: Determine which variable to eliminate.

1) Solve the system using elimination. 2x + 2y = 6 3x – y = 5 Multiply the bottom equation by 2 2x + 2y = 6 (2)(3x – y = 5) 8x = 16 x = 2 2x + 2y = 6 (+) 6x – 2y = 10 Step 3: Multiply the equations and solve. 2(2) + 2y = 6 4 + 2y = 6 2y = 2 y = 1 Step 4: Plug back in to find the other variable.

1) Solve the system using elimination. 2x + 2y = 6 3x – y = 5 (2, 1) 2(2) + 2(1) = 6 3(2) - (1) = 5 Step 5: Check your solution. Solving with multiplication adds one more step to the elimination process.

2) Solve the system using elimination. x + 4y = 7 4x – 3y = 9 Step 1: Put the equations in Standard Form. They already are! Find the least common multiple of each variable. LCM = 4x, LCM = 12y Which is easier to obtain? 4x (you only have to multiply the top equation by -4 to make them inverses) Step 2: Determine which variable to eliminate.

2) Solve the system using elimination. x + 4y = 7 4x – 3y = 9 Multiply the top equation by -4 (-4)(x + 4y = 7) 4x – 3y = 9) y = 1 -4x – 16y = -28 (+) 4x – 3y = 9 Step 3: Multiply the equations and solve. -19y = -19 x + 4(1) = 7 x + 4 = 7 x = 3 Step 4: Plug back in to find the other variable.

2) Solve the system using elimination. x + 4y = 7 4x – 3y = 9 (3, 1) (3) + 4(1) = 7 4(3) - 3(1) = 9 Step 5: Check your solution.

3) Solve the system using elimination. 3x + 4y = -1 4x – 3y = 7 Step 1: Put the equations in Standard Form. They already are! Find the least common multiple of each variable. LCM = 12x, LCM = 12y Which is easier to obtain? Either! I’ll pick y because the signs are already opposite. Step 2: Determine which variable to eliminate.

3) Solve the system using elimination. 3x + 4y = -1 4x – 3y = 7 Multiply both equations (3)(3x + 4y = -1) (4)(4x – 3y = 7) x = 1 9x + 12y = -3 (+) 16x – 12y = 28 Step 3: Multiply the equations and solve. 25x = 25 3(1) + 4y = -1 3 + 4y = -1 4y = -4 y = -1 Step 4: Plug back in to find the other variable.

3) Solve the system using elimination. 3x + 4y = -1 4x – 3y = 7 (1, -1) 3(1) + 4(-1) = -1 4(1) - 3(-1) = 7 Step 5: Check your solution.

What is the best number to multiply the top equation by to eliminate the x’s? 3x + y = 4 6x + 4y = 6 -4 -2 2 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Solve using elimination. 2x – 3y = 1 x + 2y = -3 (2, 1) (1, -2) (5, 3) (-1, -1)