Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank

Slides:



Advertisements
Similar presentations
CE 382, Hydraulic Systems Design (pipes, pumps and open channels) Principles of hydraulics 1.Conservation of energy 2.Continuity (conservation of mass)
Advertisements

CTC 261 Bernoulli’s Equation.
Pipeline Hydraulics.
Fluids & Bernoulli’s Equation Chapter Flow of Fluids There are two types of flow that fluids can undergo; Laminar flow Turbulent flow.
1 Lec 26: Frictionless flow with work, pipe flow.
Basic Hydraulics Irrigation.
Core Ag Engineering Principles – Session 1
1 CTC 450 Review Energy Equation Energy Equation Pressure head Pressure head Velocity head Velocity head Potential energy Potential energy Pumps, turbines.
Things to grab for this session (in priority order)  Pencil  Henderson, Perry, and Young text (Principles of Process Engineering)  Calculator  Eraser.
Things to grab for this session (in priority order)  Pencil  Henderson, Perry, and Young text (Principles of Process Engineering)  Calculator  Eraser.
Lesson 23 HEAD LOSS DEFINE the terms head loss, frictional loss, and minor losses. DETERMINE friction factors for various flow situations using the Moody.
Basic Hydraulics: Hydraulic continuity concepts
VISCOUS FLOW IN CONDUITS  When we consider viscosity in conduit flows, we must be able to quantify the losses in the flow Fluid Mechanics [ physical.
Things to grab for this session (in priority order)  Pencil  Henderson, Perry, and Young text (Principles of Process Engineering)  Calculator  Eraser.
Basic Hydraulics: Energy and Momentum concepts. Energy of flow Three kinds of energy gradients cause flow Elevation (called potential energy) Pressure.
Major loss in Ducts, Tubes and Pipes
Lesson 6: Mathematical Models of Fluid Flow Components ET 438a Automatic Control Systems Technology lesson6et438a.pptx1.
Power – Energy Relationships
Describe the appearance of laminar flow and turbulent flow.
Basic Hydrology & Hydraulics: DES 601
Flow through tubes is the subject of many fluid dynamics problems
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
CTC 450 Review Energy Equation Pressure head Velocity head
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: Wcone [lbf] D D = 3 [ft] air SGo = 0.89 d3 SGw= 1.00 oil d2
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: P4,gauge [lb/in2] Liquid S.G. P1,abs=14.7 [lb/in2] A 1.20
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: F [lbf] in order to keep the gate vertical air F 267 water 293
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
PO 2430 Applied Fluid MEchanics
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Fluid Mechanics Lectures 2nd year/2nd semister/ /Al-Mustansiriyah unv
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Presentation transcript:

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 Find the maximum length, L, in feet. [pause] In this problem, --- C= 100 gal min Qmax=500

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 a 8-inch diameter water pipe conveys water from a tank, to a residential community, across a distance L. C= 100 gal min Qmax=500

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 At an elevation of 220 feet, the tank provides a pressure head of 130 feet. C= 100 gal min Qmax=500

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 At an elevation of 220 feet, the community requires, a minimum of 50 pounds per square inch, of service pressure. C= 100 gal min Qmax=500

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 The pipe roughness, and max flowrate in the pipe, are also given. [pause] C= 100 gal min Qmax=500

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 Since this problem deals with pressure loss in a pipe, --- C= 100 gal min Qmax=500

Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water L pipe d= 8 [in] 470 1,330 1,780 2,220 and provides the Hazen-Williams roughness coefficient, C, --- C= 100 gal min Qmax=500

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] C= 100 we’ll begin with the Hazen-William’s equation for headloss through a pipe, where --- gal min 10.44 * L * Q1.85 Qmax=500 hL= C1.85 * d4.87

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] headloss [ft] C= 100 the headloss, in feet, equals, --- gal min 10.44 * L * Q1.85 Qmax=500 hL= C1.85 * d4.87

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] headloss [ft] length [ft] C= 100 flowrate 10.44 * L * Q1.85 10.44, times the length in feet, times the flowrate, in gallons per minute, raised to the 1.85 power, --- gal min gal Qmax=500 hL= C1.85 * d4.87 min

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] headloss [ft] length [ft] C= 100 flowrate all divided by the quantity, the roughness coefficient, raised to the 1.85 power, times the diameter, in inches, raised to the 4.87 power. gal min 10.44 * L * Q1.85 gal Qmax=500 hL= C1.85 * d4.87 min roughness diameter [in] coefficient

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] headloss [ft] length [ft] C= 100 flowrate Keep in mind, this equation has different variations, --- gal min 10.44 * L * Q1.85 gal Qmax=500 hL= C1.85 * d4.87 min roughness diameter [in] coefficient

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] headloss [ft] length [ft] C= 100 flowrate based on the units for each variable. gal min 10.44 * L * Q1.85 gal Qmax=500 hL= C1.85 * d4.87 min roughness diameter [in] coefficient

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] length [ft] C= 100 gal min 10.44 * L * Q1.85 If we solve for the length, L, we notice the problem statement already provides --- Qmax=500 hL= C1.85 * d4.87 hL * C1.85 * d4.87 L = 10.44 * Q1.85

Find: max L [ft] hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] length [ft] C= 100 gal 10.44 * L * Q1.85 3 of the 4 variables on the right hand side of the equation. Qmax=500 hL= min C1.85 * d4.87 hL * C1.85 * d4.87 L = 10.44 * Q1.85

Find: max L [ft] ? hL= hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] length [ft] C= 100 gal min 10.44 * L * Q1.85 The value for headloss is currently unknown. [pause] The headloss in the pipe, equals, --- Qmax=500 hL= C1.85 * d4.87 ? hL * C1.85 * d4.87 L = 10.44 * Q1.85

Find: max L [ft] hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community the total head at the tank, minus, the total head at the community. [pause] Writing out Bernoulli’s equation, ---

Find: max L [ft] + + - + + ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community we can simplify by noticing the the elevation is --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g

Find: max L [ft] + + - + + ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community 220 feet for both ends of the pipe, --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g

Find: max L [ft] + + - + + ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community so the elevation terms are equal, and cancel out. [pause] Since the velocity is equal to the … Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g

Find: max L [ft] + + - + + ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community flowrate in the pipe, divided by the area of the pipe, --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g Q v= A

Find: max L [ft] + + - + + π ρ*g ρ*g Ptank Pcom com ytank ycom * 4 D2 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community both of which are constant throughout the length of the pipe, the velocity is also constant, --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g π Q v= D2 * A 4

Find: max L [ft] + + - + + π ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community and v tank equals v community and the velocity terms --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g π Q vtank = vcom v= D2 * A 4

Find: max L [ft] + + - + + π ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community cancel out of the equation. [pause] The headloss in the pipe is now equal to, --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g π Q vtank = vcom v= D2 * A 4

Find: max L [ft] + + - + + - ρ*g ρ*g ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community the pressure head at the tank minus the pressure head at the community. Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g Ptank Pcom - hL = ρ*g ρ*g

Find: max L [ft] + + - + + - ρ*g ρ*g ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community The pressure head at the tank, is given as, 130 feet, and the minimum pressure at the community --- Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g Ptank Pcom - hL = ρ*g ρ*g

Find: max L [ft] + + - + + - ρ*g ρ*g ρ*g ρ*g Ptank Pcom com ytank ycom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L hL =hT,tank-hT,community as 50, pounds per square inch. Ptank Pcom v2 v2 tank com hL = + ytank + - + ycom + ρ*g ρ*g 2*g 2*g Ptank Pcom - hL = ρ*g ρ*g

Find: max L [ft] ρ*g Pcom hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L Carefully solving this second term, --- Pcom hL =130 [ft]- ρ*g

Find: max L [ft] ρ*g 2 Pcom hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L in 2 12 lbm*ft and canceling units wherever possible, * lbf in2 ft 32.2 50 * lbf*s2 Pcom lbm ft 62.4 hL =130 [ft]- 32.2 * ρ*g ft3 s2

Find: max L [ft] ρ*g 2 Pcom hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L in 2 12 lbm*ft The minimum pressure head at the community equals --- * lbf in2 ft 32.2 50 * lbf*s2 Pcom lbm ft 62.4 hL =130 [ft]- 32.2 * ρ*g ft3 s2

Find: max L [ft] ρ*g 2 Pcom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L Pcom ρ*g in 2 12 lbm*ft 115.4 feet, which makes the total head loss across the pipe equal to --- * lbf ft 32.2 50 * in2 lbf*s2 lbm ft 62.4 32.2 hL =130[ft]-115.4[ft] * ft3 s2

Find: max L [ft] ρ*g 2 Pcom Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L Pcom ρ*g in 2 12 lbm*ft 14.6 feet. [pause] With the head loss calculated, --- * lbf ft 32.2 50 * in2 lbf*s2 hL =14.6[ft] lbm ft 62.4 32.2 hL =130[ft]-115.4[ft] * ft3 s2

Find: max L [ft] hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] hL * C1.85 * d4.87 L = C= 100 all the needed variables are solved for, to determine the maximum length, L, --- 10.44 * Q1.85 gal min Qmax=500 hL =14.6[ft]

Find: max L [ft] hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] hL * C1.85 * d4.87 L = C= 100 the 8-inch pipe can extend and still maintain the minimum pressure of 50 psi is equal to, --- 10.44 * Q1.85 gal Qmax=500 min hL =14.6[ft]

Find: max L [ft] L =1,781 [ft] hP=130 [ft] Pmin=50 [psi] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] hL * C1.85 * d4.87 L = C= 100 1,781 feet. 10.44 * Q1.85 gal Qmax=500 min L =1,781 [ft] hL =14.6[ft]

Find: max L [ft] L =1,781 [ft] 470 1,330 1,780 2,220 hP=130 [ft] Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] hL * C1.85 * d4.87 470 1,330 1,780 2,220 L = C= 100 When reviewing the possible solutions, --- 10.44 * Q1.85 gal Qmax=500 min L =1,781 [ft] hL =14.6[ft]

Find: max L [ft] L =1,781 [ft] AnswerC 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank elevation=220 [ft] community Qmax water pipe L d= 8 [in] hL * C1.85 * d4.87 470 1,330 1,780 2,220 L = C= 100 The answer is C. 10.44 * Q1.85 gal Qmax=500 min L =1,781 [ft] hL =14.6[ft] AnswerC

Find: hL [ft] ε=1*10-4 [ft] 4 8 12 16 D Q L D= 6 [in] Q=500 gal min 500 gallons per minute flows through a 6-inch diameter, 500-foot long pipe. Q=500 L = 500 [ft] ε=1*10-4 [ft] T= 50 F o

Find: hL [ft] ε=1*10-4 [ft] 4 8 12 16 D Q L D= 6 [in] Q=500 gal min The temperature of the water, and the pipe roughness are also provided. Q=500 L = 500 [ft] ε=1*10-4 [ft] T= 50 F o

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L A headloss equation for flow through a pressurized pipe is, --- L V2 hL=f * * D 2*g

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss the headloss, equals, L V2 hL=f * * D 2*g

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss the friction factor, --- L V2 hL=f * * D 2*g friction factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length times the length divided by the diameter, --- L V2 hL=f * * D 2*g friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length velocity times the velocity squared, divided by 2 times the gravitational acceleration. L V2 hL=f * * D 2*g gravitational acceleration friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length velocity [pause] The problem statement provides --- L V2 hL=f * * D 2*g gravitational acceleration friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length velocity the length, and the diameter, and we also know --- L V2 hL=f * * D 2*g gravitational acceleration friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length velocity the gravitational acceleration. [pause] So we’ll need to determine the --- ft s2 L V2 32.2 hL=f * * D 2*g gravitational acceleration friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length velocity friction factor, and the velocity. [pause] The average velocity of flow, v, --- ft s2 L V2 32.2 hL=f * * D 2*g gravitational acceleration friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal min D= 6 [in] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length Q velocity, V= equals the flowrate divided by the area. A L V2 hL=f * * D 2*g friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal D= 6 [in] Q=500 min L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss length Q velocity, V= The problem statement provides the flowrate, Q, A L V2 hL=f * * D 2*g friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] Q=500 L = 500 [ft] D gal D= 6 [in] Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min s L 60 headloss 1 length ft3 Q velocity, V= 7.48 gal which we’ll convert to cubic feet per second. [pause] A L V2 hL=f * * D 2*g friction diameter factor

Find: hL [ft] π ε=1*10-4 [ft] hL=f * * * 4 D2 D= 6 [in] Q=500 gal D= 6 [in] Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min L 60 s headloss 1 length ft3 Q velocity, V= 7.48 gal The area is a function of diameter. A L V2 π hL=f * * D2 D 2*g * 4 friction diameter factor

Find: hL [ft] π ε=1*10-4 [ft] hL=f * * * 4 D2 1 D= 6 [in] 12 Q=500 gal D= 6 [in] 12 Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min L 60 s headloss 1 length ft3 Q velocity, V= 7.48 gal The diameter is converted to feet, and then substituted in. After solving for Q, and A, we compute --- A L V2 π hL=f * * D2 D 2*g * 4 friction diameter factor

Find: hL [ft] π ε=1*10-4 [ft] hL=f * * * 4 D2 1 D= 6 [in] 12 Q=500 gal D= 6 [in] 12 in Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min L 60 s headloss 1 length ft3 Q velocity, V= 7.48 gal 1.114 cubic feet per second divided by 0.1963 square feet, and the velocity through the pipe equals, --- A L V2 ft3 s π hL=f * * 1.114 D 2*g * D2 V= 4 0.1963 [ft2] friction factor diameter

Find: hL [ft] π ε=1*10-4 [ft] hL=f * * * 4 D2 1 D= 6 [in] 12 Q=500 gal D= 6 [in] 12 in Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min L 60 s headloss 1 length ft3 Q velocity, V= 7.48 gal 5.673 feet per second. [pause] A L V2 ft3 π hL=f * * 1.114 s D2 D 2*g * V= 4 0.1963 [ft2] friction factor diameter V = 5.673 [ft/s]

Find: hL [ft] π ε=1*10-4 [ft] hL=f * * * 4 D2 1 D= 6 [in] 12 Q=500 gal D= 6 [in] 12 in Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min L 60 s headloss 1 length ft3 Q velocity, V= 7.48 gal With the velocity calculated, --- A L V2 ft3 π hL=f * * 1.114 s D2 D 2*g * V= 4 0.1963 [ft2] friction factor diameter V = 5.673 [ft/s]

Find: hL [ft] π ε=1*10-4 [ft] hL=f * * * 4 D2 1 D= 6 [in] 12 Q=500 gal D= 6 [in] 12 in Q=500 min L = 500 [ft] D T= 50 F o ε=1*10-4 [ft] 1 min L 60 s headloss 1 length ft3 Q velocity, V= 7.48 gal the last remaining variable is the friction factor, f. A L V2 ft3 π hL=f * * 1.114 s D2 D 2*g * V= 4 0.1963 [ft2] friction factor diameter V = 5.673 [ft/s]

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) hL=f * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε D ƒ( ,Re) The friction factor is a function of --- L V2 hL=f * * D 2*g friction factor

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) hL=f * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number the Reynolds Number, and L V2 hL=f * * D 2*g friction factor

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) hL=f * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number the relative roughness. [pause] The relative roughness equals the --- L V2 relative hL=f * * D 2*g roughness friction factor

Find: hL [ft] ε ε=1*10-4 [ft] ε ƒ( ,Re) hL=f * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number roughness roughness length on the inside of the pipe, epsilon, divided by the inside diameter of the pipe, D. Since both of these values have been given, --- L V2 relative ε hL=f * * D 2*g roughness D friction diameter factor

Find: hL [ft] ε ε=1*10-4 [ft] ε ƒ( ,Re) hL=f * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number roughness they are substituted into the equation, and the relative roughness equals, --- L V2 relative ε hL=f * * D 2*g roughness D 1 ft in friction diameter factor 12

Find: hL [ft] ε ε=1*10-4 [ft] ε ƒ( ,Re) hL=f * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number roughness 5 times 10 to the –5. [pause] L V2 relative ε hL=f * * =5*10-5 D 2*g roughness D 1 friction ft diameter factor 12 in

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) hL=f Re= * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number The Reynolds Number equals the velocity times the diameter, --- L V2 V*D hL=f Re= * * 5*10-5 D 2*g friction factor

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) hL=f Re= * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number divided by the kinematic viscosity. L V2 V*D hL=f Re= * * 5*10-5 D 2*g friction kinematic factor viscosity

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) hL=f Re= * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L headloss ε ƒ( ,Re) Reynolds D Number The kinematic viscosity is a function of the water temperature, --- L V2 V*D hL=f Re= * * 5*10-5 D 2*g friction kinematic factor viscosity

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) Re= D= 6 [in] V = 5.673 [ft/s] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε ƒ( ,Re) Reynolds D Number T [ F] o and can be looked up in a table. Since the temperature is --- [ft2/s] V*D Re= 40 o 1.664*10-5 50 o 1.410*10-5 kinematic 60 o 1.217*10-5 viscosity

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) Re= … D= 6 [in] V = 5.673 [ft/s] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε ƒ( ,Re) Reynolds D Number T [ F] o 50 degrees Fahrenheit, the kinematic viscosity, --- [ft2/s] V*D Re= 40 o 1.664*10-5 50 o 1.410*10-5 kinematic 60 o 1.217*10-5 … viscosity

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) Re= … D= 6 [in] V = 5.673 [ft/s] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε ƒ( ,Re) Reynolds D Number T [ F] o is 1.410 times 10 to the –5, feet squared per second. [ft2/s] V*D Re= 40 o 1.664*10-5 50 o 1.410*10-5 kinematic 60 o 1.217*10-5 … viscosity

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) Re= … D= 6 [in] V = 5.673 [ft/s] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε ƒ( ,Re) Reynolds D Number T [ F] o After the velocity and diameter are plugged in, the Reynolds Number equals, --- [ft2/s] V*D Re= 40 o 1.664*10-5 50 o 1.410*10-5 kinematic 60 o 1.217*10-5 … viscosity

Find: hL [ft] ε=1*10-4 [ft] ε ƒ( ,Re) Re= … D= 6 [in] V = 5.673 [ft/s] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε ƒ( ,Re) Reynolds D =2.012*105 Number T [ F] o 2.012 times 10 to the 5th. [pause] With the relative roughness, --- [ft2/s] V*D Re= 40 o 1.664*10-5 50 o 1.410*10-5 kinematic 60 o 1.217*10-5 … viscosity

Find: hL [ft] ε=1*10-4 [ft] ε f=ƒ( ,Re) D= 6 [in] V = 5.673 [ft/s] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 and Reynolds Number. We’ll last turn to the Moody Diagram --- 5*10-5

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 f to determine the friction factor. The Moody Diagram relates the --- 5*10-5 ε D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 f friction factor to the Reynolds Number, and the relative roughness. Where the left part of the diagram --- 5*10-5 ε D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) turbulent flow laminar ε gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent f flow is used for laminar flow, and the rest of the diagram, for turbulent flow. Since the Reynolds Number in this problem is more than a few thousand, --- 5*10-5 laminar ε flow D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) turbulent flow laminar ε gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent f flow the flow is turbulent. In the diagram, each curved line represents a --- 5*10-5 laminar ε flow D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε ε ε ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent flow f ε constant relative roughness value, where the bottom-most line is considered --- =0.00006 5*10-5 D laminar ε =0.00004 flow D ε =0.00002 D ε =0.00001 D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε ε ε ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent flow f ε a “smooth” pipe. [pause] To find the friction factor, --- =0.00006 5*10-5 D laminar ε =0.00004 flow D ε =0.00002 D “smooth” ε =0.00001 pipe D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε ε ε ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent flow f ε we’ll find the Reynolds Number on the horizontal axis, then trace up --- =0.00006 5*10-5 D laminar ε =0.00004 flow D ε =0.00002 D ε =0.00001 D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε ε ε ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent flow f ε to the relative roughness contour equal to 5 times 10 to the –5. =0.00006 5*10-5 D laminar ε =0.00004 flow D ε =0.00002 D ε =0.00001 D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε ε ε ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent flow f ε Then trace left to find the vertical axis, to find the value of f. For this problem, the friction factor is most nearly, ---- =0.00006 5*10-5 D laminar ε =0.00004 flow D ε =0.00002 D ε =0.00001 D Re

Find: hL [ft] f Re ε=1*10-4 [ft] ε f=ƒ( ,Re) ε ε ε f=0.016 ε D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 turbulent flow f ε 0.016. If reading the Moody Diagram is difficult, --- =0.00006 5*10-5 D laminar ε =0.00004 flow D ε f=0.016 =0.00002 D ε =0.00001 D Re

Find: hL [ft] ε=1*10-4 [ft] f( = 5*10-5) ε f=ƒ( ,Re) ε Re f=0.016 gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 ε these values can also be looked up, in published tables. Re f( = 5*10-5) 5*10-5 D 1.5*105 0.0169 f=0.016 2.0*105 0.0160 2.5*105 0.0154

Find: hL [ft] ε=1*10-4 [ft] f( = 5*10-5) ε f=ƒ( ,Re) ε Re f=0.016 gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L ε f=ƒ( ,Re) D 2.012*105 ε [pause] By knowing the friction factor, --- Re f( = 5*10-5) 5*10-5 D 1.5*105 0.0169 f=0.016 2.0*105 0.0160 2.5*105 0.0154

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] V = 5.673 [ft/s] Q=500 gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L f=0.016 length velocity the headloss through the pipe can be calculated. L V2 hL=f * * D 2*g gravitational acceleration friction diameter factor

Find: hL [ft] ε=1*10-4 [ft] hL=f * * D= 6 [in] V = 5.673 [ft/s] Q=500 gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L f=0.016 1 ft in 12 The variables are substituted into the equation, --- L V2 hL=f ft s2 * * 32.2 D 2*g

Find: hL [ft] ε=1*10-4 [ft] hL=f hL=8.0 [ft] * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L f=0.016 1 ft 12 in and the head loss equals 8.0 feet. L V2 hL=f ft * * 32.2 D 2*g s2 hL=8.0 [ft]

Find: hL [ft] ε=1*10-4 [ft] hL=f hL=8.0 [ft] 4 8 12 16 * * D= 6 [in] gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L f=0.016 4 8 12 16 1 ft 12 in Looking over the possible solutions, --- L V2 hL=f ft * * 32.2 D 2*g s2 hL=8.0 [ft]

Find: hL [ft] ε=1*10-4 [ft] AnswerB hL=f hL=8.0 [ft] 4 8 12 16 * * gal min D= 6 [in] V = 5.673 [ft/s] Q=500 L = 500 [ft] D T= 50 F o Q ε=1*10-4 [ft] L f=0.016 4 8 12 16 1 ft 12 in the answer is B. L V2 hL=f ft * * 32.2 D 2*g s2 hL=8.0 [ft] AnswerB

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4