Stability of DLC film on stainless steel investigated by tensile-test

Slides:



Advertisements
Similar presentations
Outline Curriculum (5 lectures) Each lecture  45 minutes
Advertisements

Residual Stress Behavior of DLC Film in Humid Environment Young-Jin Lee a),b), Tae-Young Kim a), Kwang-Ryeol Lee a), In-Sang Yang b) a)Future Technology.
DLC DLC Se Jun Park, Kwang-Ryeol Lee, Seung-Cheol Lee, Future Technology Research Division, Korea Institute of Science and Technology.
Humidity Dependence of Tribological Behavior of DLC Film Se Jun Park *#, Kwang-Ryeol Lee *, Seung-Cheol Lee * and Dae-Hong Ko # * Korea Institute Science.
Nitriding Team Nitriding
Environmental Dependence on Tribological Behavior of Diamond-like Carbon Films with Nano-undulated Surface Jin Woo Yi a,b, Se Jun Park a, Kwang-Ryeol Lee.
Comparative Study of Diamond- like Carbon Films Deposited from Different Hydrocarbon Sources Se Jun Park, Kwang-Ryeol Lee Future Technology Research Division.
Hemocompatibility of Plasma Treated Si Incorporated Diamond-like Carbon Films R. K. Roy, M.-W. Moon, K.-R. Lee Future Convergence Research Laboratories,
Effect of Environmental Gas on the Growth of CNT in Catalystically Pyrolyzing C 2 H 2 Minjae Jung*, Kwang Yong Eun, Y.-J. Baik, K.-R. Lee, J-K. Shin* and.
Stainless Steels Stainless steels are iron base alloys that contain a minimum of approximately 12% Cr, the amount needed to prevent the formation of rust.
of Diamond-like Carbon Thin Film
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Computational Nano & Micro Mechanics Laboratory UCLA Measurement of Tungsten Armor - Ferritic Steel Interfacial Bond Strength Using a Nanosecond Laser.
S. J. Parka),b) K.-R. Leea), D.-H. Kob), J. H. Hanc), K. Y. Eun a)
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Heon-Young Lee a, Seung-Joo Lee b, Sung-Man Lee a a Department of Advanced.
For example, adhesive wear occurs frequently during tribo-test under aqueous condition. Residual Stress of a-C:H Film in Humid Environment Young-Jin Lee.
Comparison of Elastic Modulus of Very Thin DLC Films Deposited by r. f
R. K. Roy, S.-J. Park, H.-W. Choi, K.-R. Lee
In this study, Ge-rich a-SiGe films have been fabricated by RF magnetron co-sputtering at two different base-pressures. As-sputtered SiGe thin-films were.
Tribo-Mechanical Evaluations of HIPed Thermal Spray Cermet Coatings V. StoicaHeriot-Watt University, UK Rehan Ahmed Heriot Watt University, UK T. ItsukaichiFujimi.
Li-Mn-O Thin Film Cathode prepared at Room Temperature Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Jeong-Kyu Lim a, Hyeon-Young.
Chapter 15: Fundamentals of Metal Forming
Hemocompatibility of Surface Modified Diamond-like Carbon Coatings R. K. Roy, M.-W. Moon, K.-R. Lee Future Technology Research Laboratories, KIST, Seoul,
Tissue Biocompatibility of Variously Treated DLC-coated NiTi Fragments using Rat Model Shin JH 1, Kim TH 1, Kim EY 1, Song HY 1, Moon MW 2, Lee KR 2, Han.
Comparative Study of Diamond- like Carbon Films Deposited from Different Hydrocarbon Sources Se Jun Park, Kwang-Ryeol Lee Future Technology Research Division.
Hemocompatibility of Surface Modified Si Incorporated Diamond-like Carbon Films R. K. Roy, S.-J. Park, H.-W. Choi, K.-R. Lee Future Technology Research.
IMPROVEMENT OF HEIGHT UNIFORMITY OF ZnO NANOWIRE ARRAYS BY USING ELECTROPOLISHING METHOD Nano-Scale Measurement & AnaLysis Lab.
Atomic Scale Computational Simulation for Nano-materials and Devices: A New Research Tool for Nanotechnology Kwang-Ryeol Lee Future Technology Research.
Effect of hemocompatibility on the surface properties of Si incorporated diamond like carbon films. R. K. Roy*, S. J. Park*, K.-R. Lee*, D. K. Han**, J.-H.
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. AS deposited LiCoO 2 thin film cathodes prepared by RF magnetron sputtering.
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Cycle performance of Si-based Thin Film Anodes for Li-ion Batteries Kwan-Soo.
Stability of Diamond-like Carbon Films in Aqueous Environment Kwang-Ryeol Lee, Se Jun Park and Young Jin Lee Korea Institute of Science and Technology,
Environmental Dependence of Tribological Behavior of DLC Films Se-Jun Park and Kwang-Ryeol Lee Future Technology Research Division Korea Institute of Science.
Introduction P. Chelvanathan 1, Y. Yusoff 2, M. I. Hossain 1, M. Akhtaruzzaman 1, M. M. Alam 3, Z. A. AlOthman 3, K. Sopian 1, N. Amin 1,2,3 1 Solar Energy.
Ш.Results and discussion Ш. Results and discussion a) W Composition b) Stress and Mechanical Properties c) TEM-microstructures ШІІІ C Si substrate Ar W.
Meta-stable Sites in Amorphous Carbon Generated by Rapid Quenching of Liquid Diamond Seung-Hyeob Lee, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee, and.
Friction Behavior of DLC film with Environmental Changes Copyright, 1997 © Dale Carnegie & Associates, Inc. S. J. Park*, K.-R. Lee*, D.-H. Ko +, K. Y.
Characterization of Mechanical Properties of Thin Film Using Residual Compressive Stress Sung-Jin Cho, Jin-Won Chung, Myoung-Woon Moon and.
Ho-Gun Kim, Seung-Ho Ahn, Jung-Gu Kim, *Se-Jun Park, *Kwang-Ryol Lee, **Rizhi Wang SungKyunKwan University, Korea *Korea Institute of Science and Technology,
WHY TITAN WORKS AGAINST RESTENOSIS?. INTRODUCTION THE CELL MODEL THE HUMAN THE ANIMAL MODEL CONCLUSION WHY TITAN WORKS AGAINST RESTENOSIS ?
Electro-Ceramics Lab. Electrical Properties of SrBi 2 Ta 2 O 9 Thin Films Prepared by r.f. magnetron sputtering Electro-ceramics laboratory Department.
1 Friction behaviour of diamond-like carbon films with varying mechanical properties The International Conference on Metallurgical Coatings and Thin Films.
Carbon Nanotube Growth Enhanced by Nitrogen Incorporation Tae-Young Kim a), Kwang-Ryeol Lee, Kwang Yong Eun and Kyu-Hwan Oh a) Future Technology Research.
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
IV. Results and Discussion Effect of Substrate Bias on Structure and Properties of W Incorporated Diamond-like Carbon Films Ai-Ying Wang 1, Kwang-Ryeol.
Korea Institute of Science and Technology Seung-Hyeob Lee, Churl-Seung Lee, Seung-Cheol Lee, Kyu-Hwan Lee, and Kwang-Ryeol Lee Future Technology Research.
Jin-Won Chung *+, Kwang-Ryeol Lee *, Dae-Hong Ko +, Kwang Yong Eun * * Thin Film Technology Research Center, Korea Institute of Science and Technology.
Curious stress reduction with W incorporation of WC-C nanocomposite films by hybrid ion beam deposition A. Y. Wang a), H. S. Ahn a), K. R. Lee a), J. P.
Thermal annealing effect of tetrahedral amorphous carbon films deposited by filtered vacuum arc Youngkwang Lee *†,Tae-Young Kim*†, Kyu Hwan Oh†, Kwang-Ryeol.
Tribological Behavior of DLC Film in Aqueous Environment Se-Jun Park, Kwang-Ryeol Lee, and Dae-Hong Ko Korea Institute of Science and Technology, P.O.Box.
PRESENTED BY : AJIT BEHERA National institute of technology, Rourkela.
Protective Coatings against Liquid Metal Embrittlement Protective Coatings against Liquid Metal Embrittlement.
Testing the adhesion of thin film to substrate
HR-SEM images of a latex film electrochemically deposited on a stainless steel stent under a constant potential of 1.3 V for 10 min: (A) The stent after.
R. K. Roy, S.-J. Park, H.-W. Choi, K.-R. Lee
Recent result of ~650-GHz SIS-device fabrication at NRO
Introduction Thin films of hydrogenated amorphous silicon (a-Si:H) are used widely in electronic, opto-electronic and photovoltaic devices such as thin.
P2-D125 Decrement of the Exchange Stiffness Constant of CoFeB thin films with Ar gas pressure. Jaehun Cho, Jinyong Jung, Ka-Eon Kim, Sukmock Lee Chun-Yeol.
Residual Stress of a-C:H Film in Humid Environment
Sang-Pil Kim1,2, Kwang-Ryeol Lee1, Jae-Sung Kim3 and Yong-Chae Chung2
Jung-Hae Choi, Hyo-Shin Ahn, Seung-Cheol Lee & Kwang-Ryeol Lee
1.6 Magnetron Sputtering Perpendicular Electric Magnetic Fields.
금속이 혼입된 DLC 박막의 응력감소 거동 ; 제일원리계산
Characterization of Mechanical Properties of Diamond-like Carbon Films by Using Residual Compressive Stress Sung-Jin Cho, Jin-Won Chung, Myoung-Woon.
R. K. Roy, S.-J. Park, H.-W. Choi, K.-R. Lee
A new approach to strengthen grain boundaries for creep
Tae-Young Kim*, Seung-Hyup Lee, Churl Seung Lee,
S15-O-13 10~14, Sep., 2006 Jeju, Korea IUMRS-ICA-2006
The Thermal Annealing Effect on The Residual Stress and Mechanical Property in The Compressive stressed DLC Film H. W. Choi, M. -W. Moon, T. -Y. Kim2,
Presentation transcript:

Stability of DLC film on stainless steel investigated by tensile-test H. W. Choi1,2, K. -R. Lee, R. Wang3, K. H. Oh2 Future Technology Research Division, Korea Institute of Science and Technology Materials Science and Engineering, Seoul National University Department of Metals and Materials Engineering, University of British Columbia, Vancouver, Canada Introduction Biological application of DLC as a stent General Bio application of DLC Heart Valve DLC for Wear Resistance Courtesy of A-san hospital (’04.7.) ● Electrolytic-polishing ○ liquid : A2 ○ 15V, 19flow, 30Sec ● Processing parameters ○ Ar cleaning : 3mTorr, -600Vb, 15min-60min ○ Si buffer layer - 20m Torr, 60% MFC - -200Vb, 2min 30sec-15min ○ Annealing : at room-400°C ● DLC deposition ○ R.F-PACVD ○ C6H6, -400Vb, 10mTorr, 11min Purpose Experimental condition Estimated problem of DLC for bio application as a stent SUS 304 0.09-0.12mm Ar pre-cleaning (15-60min) Si buffer layer ( 2m30s – 15min) DLC ○ Biomaterial : Stainless steel ○ Disadvantage of metal substrate as a biomaterial - wear debris : cause foreign body reaction, tissue reaction - harmful ion ( Cr+, Ni+) can occurrence - metal corrosion can induce bone resorption SUS 304 Ar pre-cleaning Time & adhesion Experimental Results (a) 100μm (a) (b) (c) (d) (b) 20μm 20μm Ar -600Vb, 15min Ar -600Vb, 30min (c) 20μm (d) A direction of cracks followed the perpendicular against strain direction and spallation which seem to related to its slip band propagated with its shear stress Strain- Force curve of tensile test Ar -600Vb, 60min Bias voltage & adhesion Annealing & adhesion Si buffer thickness & adhesion Summary 20μm Stability of DLC films within 2% strain. However, Observed crack occurrence from 3.8% strain. A Relationship of adhesion depends on processing parameters. ◦ Improvement of adhesion with increasing Ar pre-cleaning time ◦ Enhancement of adhesion with increasing Bias voltage during Ar pre-cleaning. ◦ Increasing of adhesion with increasing Si buffer layer thickness ◦ Degradation of adhesion with increasing Bias voltage during Si buffer layer deposition ◦ Deterioration of adhesion with increasing Annealing temperature 20μm 20μm Ar -200Vb Ar -900Vb, No annealing Si -200Vb, 19nm 20μm Evolution of spallation ◦ Crack occurrence : Vertical of tensile direction ◦ Spallation evolution direction : shear stress direction 20μm 20μm Possibility of adhesion evaluation by tensile test. Ar -900Vb Ar -900Vb, 400°C annealing Si -200Vb, 84nm