Section 2 Measurement: Errors, Accuracy, and Precision

Slides:



Advertisements
Similar presentations
MEASUREMENT 1.4.
Advertisements

Physics Rules for using Significant Figures. Rules for Averaging Trials Determine the average of the trials using a calculator Determine the uncertainty.
Uncertainty in Measurements
Significant Figures.
Data analysis (chapter 2) SI units and the metric system ▫Base units  Time (sec)  Length (m)  Mass (kg)  Temperature (Kelvin)  Derived base units.
Uncertainty and Error (11.1)  error in a measurement refers to the degree of fluctuation in a measurement  types systematic error ○ measurements are.
Uncertainty and Error (11.1)  error in a measurement refers to the degree of fluctuation in a measurement  types systematic error ○ measurements are.
Scientific Notation Converting into Sci. Notation: –Move decimal until there’s 1 digit to its left. Places moved = exponent. –Large # (>1)  positive.
ERRORS AND SIGNIFICANT FIGURES. ERRORS Mistakes - result of carelessness, easily detected Errors - fall into two types, systematic or random.
Measurement: Errors, Accuracy, and Precision. August 13, 2010 HW: Physics to Go (PTG)-pg. 32, #6-9  Do Now (NB pg. 6)  Turn in Current Event  WDYS.
Chemistry 3.1 Uncertainty in Measurements. I. Accuracy, Precision, & Error A. Accuracy – how close a measurement comes to the “true value”. 1. Ex: Throwing.
Do Now Take a copy of the worksheet Organizing Data from the front desk. Bring it back to your seat and work on it for the first 10 min. of class.
The Importance of measurement Scientific Notation.
Honors Chemistry I. Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
The Density of Liquids Day 2. Curriculum Big Idea: Chemistry is the study of matter and the changes it undergoes. Big Idea: Chemistry is the study of.
SIGNIFICANT FIGURES AMOLE WHAT & WHY?  Refer to them as “Sig Figs” for short  Used to communicate the degree of precision measured  Example -
3.1 Measurement and Uncertainty How do you think scientists ensure measurements are accurate and precise?
Uncertainty in Measurement Accuracy, Precision, Error and Significant Figures.
Math and Measurement. Significant Figures Significant Zeros 1.Leading zeros are never significant 2.Trailing zeros only count if there’s a decimal point.
MEASUREMENT. Chapter One: Measurement  1.1 Measurements  1.2 Time and Distance  1.3 Converting Measurements  1.4 Working with Measurements.
Uncertainty in Measurement
1.3 Converting units  To convert 1,565 pennies to the dollar amount, you divide 1,565 by 100 (since there are 100 pennies in a dollar).  Converting SI.
2.3 Using Scientific Measurements. Accuracy vs. Precision  Accuracy- closeness of measurement to correct or accepted value  Precision- closeness of.
The Density of Liquids. Curriculum Big Idea: Chemistry is the study of matter and the changes it undergoes. Big Idea: Chemistry is the study of matter.
 Math and Measurements:  Chemistry math is different from regular math in that in chemistry we use measurements and in math we use exact numbers. Because.
Chemistry Chapter 2D Uncertainty in Measurement. Uncertainty  Represents how well a measurement was made  Science is ‘peer reviewed’  We don’t just.
Significant Figures and Scientific Notation. What is a Significant Figure? There are 2 kinds of numbers:  Exact: the amount of money in your account.
3.1 Using and Expressing Measurements Do Now: Using prior knowledge in math, put the following numbers in scientific notation
Chapter 3.1 Accuracy and Precision Significant Figures.
Measurements Every measurements has UNITS
Learning Targets I can use correct numbers of significant figures and units in both measurements and calculations. I can accurately measure mass and volume.
Math of Chem I Textbook Chapter 1 Aim:
WHY DO SCIENTISTS TAKE MEASUREMENTS ?
Significant Figures Sig Figs.
How Reliable are Measurements?
BELLWORK 9/13/16 1 Tm = 1012 m 1mm = 10-3 m 1Mm = 106 m
Significant Figures.
Day 2. SI Units.
Please find your NEW seat. Take out your planners!
Accuracy and Precision
Measurement Schmeasurement
Measurement Schmeasurement
MEASUREMENT.
BELLWORK 9/01/17 Complete #’s 1, 12, 22, and 34 in the new Virginia Bellwork Packet.
Measurement and uncertainties
Uncertainty and Significant Figures
Chapter 2 Accuracy vs Precision.
measurement and data processing Topic 11.1 & 11.2 (not 11.3)
Measurements Scientists use two word to describe how good the measurements are Accuracy- how close the measurement is to the actual value Precision- how.
Section 3-2 Uncertainty in Measurements
Accuracy and Precision
measurement and data processing Topic 11.1 & 11.2 (not 11.3)
BELLWORK 9/2/15 How does a scientist reduce the frequency of human error and minimize a lack of accuracy? A. Take repeated measurements B. Use the same.
Significant Figures in Calculations
Section 2.3 Uncertainty in Data
Significant Figures.
Measurements Scientists use two word to describe how good the measurements are Accuracy- how close the measurement is to the actual value Precision- how.
Using Scientific Measurements
CH. 2 - MEASUREMENT I. Using Measurements.
Scientific Notation and Significant Figures
Accuracy and Precision
Accuracy and Precision
Measurements and Their Uncertainty 3.1
MEASUREMENT.
Measurements Scientists use two word to describe how good the measurements are Accuracy- how close the measurement is to the actual value (how right you.
The Mathematics of Chemistry
Objectives C-1.1 Apply established rules for significant digits, both in reading a scientific instrument and in calculating a derived quantity from measurement.
MEASUREMENT.
2.b Using Scientific Measurements
Significant Figures Overview
Presentation transcript:

Section 2 Measurement: Errors, Accuracy, and Precision WDYS? (p22) 1. 2. 3. WDYT? 3m vs. 10m = yes OR no 3m vs. 3.01m = yes OR no Investigate – you will measure a given distance by various techniques

1-2 NOTES “Errors in Measurement” In 1-2 INVESTIGATE, you measured distance with: 1. Stride 2. Meter stick 3. Tape measure What did we learn??? There are NO exact measurements With each successive (REPEATED) method, the error range became less

A. Random Errors (human) 1-2 NOTES “Errors in Measurement” A. Random Errors (human) Random Errors  errors that cannot be corrected by calculating The uncertainty can never be completely eliminated, no matter how good the instrument or scientist Uncertainty= [ high measurement – low measurement ] 2 B. Systemic Errors (tool) Systemic Errors  an error produced by using the wrong tool or using the tool incorrectly EXAMPLE You write 4m instead of 4yds

Example: Ava measures the mass of an object 10.2 kg 11.7 kg 12.3 kg What is the value of the mass? (include uncertainty)

C. Accuracy and Precision Accuracy  how close a series of measurements are to an accepted value EXAMPLE NEAR the target area Precision  the frequency with which a measurement produces the same results EXAMPLE GROUPED together

D. Significant Figures ALL non-zeros are significant. How many do we “keep”? Rules for identifying significant figures: ALL non-zeros are significant. All “Sandwiched” zeros are significant Leading zeros are never significant Trailing zeros are only significant if there is a decimal present

D. Significant Figures Where do our numbers come from? 2. Measurement: Get as good as the instrument can take you, estimate one more! Example:

D. Significant Figures (cont.) MATH AND SIGNIFICANT FIGURES Adding and subtracting—keep the LEAST number of significant figures AFTER the decimal Multiplying and divining—keep the LEAST number of significant figures.