LINEAR CONTROL SYSTEMS

Slides:



Advertisements
Similar presentations
Chapter 4 Modelling and Analysis for Process Control
Advertisements

ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Review Resources: Wiki: State Variables YMZ: State Variable Technique Wiki: Controllability.
1 In this lecture, a model based observer and a controller will be designed to a single-link robot.
Lect.2 Modeling in The Frequency Domain Basil Hamed
Dr. Syed Saad Azhar Ali Control Systems Dr. Syed Saad Azhar Ali.
LINEAR CONTROL SYSTEMS
SYSTEMS Identification
SYSTEMS Identification
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
Lecture 7 Topics More on Linearity Eigenfunctions of Linear Systems Fourier Transforms –As the limit of Fourier Series –Spectra –Convergence of Fourier.
DC motor model ETEC6419. Motors of Models There are many different models of DC motors that use differential equations. During this set of slides we will.
Lect.2 Modeling in The Frequency Domain Basil Hamed
Nise/Control Systems Engineering, 3/e
Ch. 6 Single Variable Control
Transfer Functions Chapter 4
Lec 3. System Modeling Transfer Function Model
Chapter 3 mathematical Modeling of Dynamic Systems
Modified by Albert W.J. Hsue,
ME 335 Boğaziçi University A Study on Motor Speed Control.
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Transfer Functions.
SYSTEMS Identification Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference: “System Identification Theory For The User” Lennart.
Lecture 5: Transfer Functions and Block Diagrams
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
SYSTEMS Identification Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Reference: “System Identification Theory.
The Laplace Transform.
LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad.
ECE 483. Digital Control Systems Analysis and Design TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A AAA A A.
For field control with constant armature current
Modern Control TheoryLecture 1, written by Xiaodong Zhao1 Modern Control Theory Syllabus Course Coordinator: Dr. Xiaodong Zhao – Room: Building Lab 2,
Lecture 5\6 Analysis in the time domain (I) —First-order system North China Electric Power University Sun Hairong.
University of Warwick: AMR Summer School 4 th -6 th July, 2016 Structural Identifiability Analysis Dr Mike Chappell, School of Engineering, University.
EE611 Deterministic Systems Examples and Discrete Systems Descriptions Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
EE611 Deterministic Systems System Descriptions, State, Convolution Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Lesson 14: Transfer Functions of Dc Motors
Textbook and Syllabus Textbook: Syllabus:
MESB374 System Modeling and Analysis Transfer Function Analysis
MESB374 System Modeling and Analysis
© Dr. Elmer P. Dadios - DLSU Fellow & Professor
Chapter 4 Transfer Function and Block Diagram Operations
Advanced Control Systems (ACS)
Transfer Functions Chapter 4
Transfer Functions.
Signal Processing First
Laplace and Z transforms
ME375 Handouts - Fall 2002 MESB374 Chapter8 System Modeling and Analysis Time domain Analysis Transfer Function Analysis.
Control Systems (CS) Lecture-12-13
DC Motor Driving an Inertial Load
Digital Control Systems Waseem Gulsher
Feedback Control Systems (FCS)
Modern Control Systems (MCS)
LINEAR CONTROL SYSTEMS
Ali Karimpour Associate Professor Ferdowsi University of Mashhad
Signals and Systems Using MATLAB Luis F. Chaparro
Ali Karimpour Associate Professor Ferdowsi University of Mashhad
LINEAR CONTROL SYSTEMS
Modeling in the Time Domain
Chapter 3 Convolution Representation
SYSTEMS Identification
State Space Method.
LINEAR CONTROL SYSTEMS
DC Motor Driving an Inertial Load
State Space circuit model
Example 1: Find the magnitude and phase angle of
§1—2 State-Variable Description The concept of state
Signals and Systems Lecture 2
Signals and Systems Revision Lecture 1
. Modeling OBJECTIVE Revision on Laplace transform
Chapter 3 Modeling in the Time Domain
Convolution sum & Integral
Presentation transcript:

LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad <<<1.1>>> ###Control System Design### {{{Control, Design}}}

Different representations of control systems Lecture 3 Different representations of control systems Topics to be covered include: High Order Differential Equation. (HODE model) State Space model. (SS model) Transfer Function. (TF model) State Diagram. (SD model)

High order differential equation (HODE). معادلات ديفرانسيل مرتبه بالا HODE model

Example 1: A high order differential equation (HODE). مثال 1: يک معادله ديفرانسيل مرتبه بالا ورودی خروجی HODE model

Example 2: Another high order differential equation. مثال2: مثالی ديگر از معادله ديفرانسيل مرتبه بالا خروجی ورودی HODE model eb

State Space Models (SS) معادلات فضای حالت For continuous time systems SS model For linear time invariant continuous time systems <<<3.6>>> ###State Space Models### SS model

State Space Models معادلات فضای حالت فرم کلی فضای حالتی سيستمهای LTI General form of LTI systems in state space form فرم کلی فضای حالتی سيستمهای LTI <<<3.6>>> ###State Space Models### SS model

Example 3: A linear time invariant continuous time systems مثال3: يک سيستم خطی غير متغير با زمان (LTI) output SS model

Example 3: Continue مثال3: ادامه The equations can be rearranged as follows:ساده سازی We have a linear state space model with مدل خطی فضای حالتی

A demonstration robot containing several servo motors مثالی از موتور dc در ربات

Example 4: DC motor مثال 4: موتور DC e(t) - the electrical torque J - be the inertia of the shaft e(t) - the electrical torque ia(t) - the armature current k1; k2 - constants R - the armature resistance HODE model SS model

Different representations نمايشهای مختلف SD model HODE model TF model SS model

Linear high order differential equation معادلات ديفرانسيل مرتبه بالای خطی The study of differential equations of the type described above is a rich and interesting subject. Of all the methods available for studying linear differential equations, one particularly useful tool is provided by Laplace Transforms. <<<4.2>>> ###Linear Continuous Time Models### مطالعه معادلات ديفرانسيل مرتبه بالای خطی فوق موضوع بسيار جالبی بوده و يک روش خاص حل آن استفاده از تبديل لاپلاس است.

Table : Laplace transform table جدول تبديل لاپلاس u(t) - u(t-τ)

Table : Laplace transform properties. خواص تبديل لاپلاس y(t-τ) u(t-τ)

Transfer Function model مدل تابع انتقال TF model <<<4.5>>> ###Transfer Functions### Or Input-output model HODE model TF model

Different representations نمايشهای مختلف SD model HODE model TF model SS model

But how can we change SS model to TF model? اما چگونه معادلات فضای حالت را به تابع انتقال تبديل کنيم Use Laplace transform Then Let initial condition zero SS model TF model

Different representations نمايشهای مختلف SD model HODE model TF model SS model

TF model properties خواص مدل تابع انتقال 1- It is available just for linear systems. 2- It is derived by zero initial condition. 3- It just shows the relation between input and output so it may lose some information. 4- It can be used to show delay systems but SS can not.

Example 5: A thermal system مثال5: یک سيستم حرارتی t (Time) Input signal 1 Output signal k Input signal is an step function so:

Example 6: A system with pure time delay مثال 6: سيستمی با تاخير ثابت

State diagram دياگرام حالت s -1 x2(0) x1(s) x2(s) SD model

State diagram to state space دياگرام حالت به معادلات حالت SD model SS model

Different representations نمايشهای مختلف SD model HODE model TF model SS model

Different representations نمايشهای مختلف HODE SS Realization SD TF Mason’s rule Discussed in this lecture Will be discussed in next lecture

Exercises 2-1 Find the SS model and TF function model for example 1. 2-3 Find the TF function model for example 3. 2-4 Find the TF function model for example 4. a) Suppose angular position as output b) Suppose angular velocity as output 2-5 In example 5 find the output a) the input is e-2t b) the input is unit step

Exercises (Continue) 2-6 In the different representation slide show the validity of red directions 2-7 Change the equations derived in example 2 to one order 3 HODE.