Rotational Spectra of H2S Dimer: Observation of Ka =1 Lines

Slides:



Advertisements
Similar presentations
“Rotational Energy Transfer in o - / p -H 2 + HD” Renat A. Sultanov and Dennis Guster BCRL, St. Cloud State University St. Cloud, MN June 20, 2007 OSU.
Advertisements

Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2010 Dr. Susan Lait.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Galen Sedo Kenneth Leopold Group University of Minnesota A Microwave and ab initio Study of (CH 3 ) 3 CCN--SO 3.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
INFRARED-ACTIVE VIBRON BANDS ASSOCIATED WITH RARE GAS SUBSTITUTIONAL IMPURITIES IN SOLID HYDROGEN PAUL L. RASTON and DAVID T. ANDERSON, Department of Chemistry,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
1 B. RAM PRASAD, MANGALA SUNDER KRISHNAN Department of Chemistry, Indian Institute of Technology Madras, Chennai , India. AND E. ARUNAN Department.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Chapter 9 Covalent Bonding. Covalent bond Sharing of electrons –Nonmetal- nonmetal – electronegativity difference less than 1.7.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
MODELING MATTER AT NANOSCALES 3. Empirical classical PES and typical procedures of optimization Classical potentials.
INTERMOLECULAR FORCES (bonds) Occur between molecules Weaker than intramolecular forces.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Intermolecular Forces of Attraction AP Chemistry 2 SNSH Spring 2000.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Carbon dioxide clusters: (CO 2 ) 6 to (CO 2 ) 13 J. Norooz Oliaee, M. Dehghany, N. Moazzen-Ahmadi Department of Physics and Astronomy University of Calgary.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational Spectra and Structure of PhenylacetyleneH2S complex
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
Kanupriya Verma, K.S.Viswanathan Department of Chemical Sciences
Remeasurement* of the Microwave Spectrum of
Chirped pulse rotational spectroscopy
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Ionic and Metallic Bonding
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
Becca Mackenzie Chris Dewberry, Ken Leopold
Microwave spectra of 1- and 2-bromobutane
INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH (IISER) MOHALI
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Fourier transform microwave spectra of n-butanol and isobutanol
Intermolecular attractions
The rotational spectrum of the urea isocyanic acid complex
The Conformational Landscape of Serinol
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Intermolecular Forces
Chapter 8 Covalent Bonding 8.4 Polar Bonds and Molecules
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Department of Chemistry North Eastern Hill University
Michal M. Serafin, Sean A. Peebles
Experimental Measurement of the Induced Dipole Moment of an Isolated Molecule in Its Ground and Electronically Excited States. Indole and Indole-H2O.*
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Rotational Spectra of H2S Dimer: Observation of Ka =1 Lines Arijit Dasa, Pankaj Mandalb, Frank J. Lovasc, Chris Medcraftd, and E. Arunana aDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 India. bIndian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008 cNational Institute of Standards and Technology, Optical Sensors Division,100 Bureau Dr.,Gaithersburg, MD 20899 dSchool of Chemistry,Newcastle University,Bedson Building,Newcastle upon Tyne,Tyne and Wear NE1 7RU,United Kingdom

H2O vs. H2S in Condensed Phase Hydrogen bonding van der Waals interaction H2O at 0 °C 4 neighbours H2S at – 60 °C 12 neighbours “They were as different as apples and oranges!!” http://phys.org/news/2014-6-familiar-strange-personality-revealed.html http://en.wikipedia.org/wiki/Sphere_packing E. Arunan and D. Mani, Faraday Discuss.,2015, 177, 51 E. Arunan UCI-CaSTL Centre talk 22 January 2016 .

Hydrogen Bonding and van der Waals Interaction In Pauling’s classic book of “THE NATURE OF THE CHEMICAL BOND” there is a chapter on hydrogen bond. (L. Pauling, The Nature of the Chemical Bond, Cornell University Press, 1939.) Hydrogen bonding : Simple dipole-dipole interaction? Physical forces behind hydrogen bonding and van der Waals interaction are very similar.(E. Arunan and D. Mani, Faraday Discuss., 2015, 177, 51) All intermolecular interactions, including hydrogen bonding, should be classified as van der Waals interactions.(E. Arunan, written for ISRAPS Bulletin (2005)

H2O Dimer and H2S Dimer in Optimized Geometry Optimized geometry of the H2O dimer & H2S dimer, look very similar E. Arunan and D. Mani, Faraday Discuss.,2015,177, 51 Electron Density Topology Both are Hydrogen Bonded!! Bond Critical Point

A Look Back to 1988: 43rd ISMS Observed Transitions for H32SH···32SH2 (E1 State) J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3498.561(4) 3 2 0 2 6996.761(4) 3 0 3 10494.240(4) -1 4 0 4 13990.645(4) -3 5 0 5 17485.615(8) -7 6 0 6 20978.803(4) 1 Fitted Constants(E1 State) (B+C)/2 /MHz 1752.8815(12) DJ /kHz 15.081(36) F. J Lovas, P. K Mandal and E. Arunan, unpublished work P. K. Mandal, Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert, 43rd Int.Symp. on Molecular Spectroscopy. (1988)

Observed Transitions for H32SH···32SH2 (E2 State) J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3496.141(4) 4 2 0 2 6991.949(4) 1 3 0 3 10487.005(4) -2 4 0 4 13980.969(4) -1 5 0 5 17473.460(8) -6 6 0 6 20964.135(4) Fitted Constants (E2 State) (B+C)/2 /MHz 1752.8815(12) DJ /kHz 15.081(36) K=0 lines for H34SH···32SH2 , H32SH···34SH2, D32SH···32SDH, H32SD···32SD2, H34SD···32SD2, H32SD···32SD2, D32SD···32SD2, D34SD···32SD2 were also known. H232S ···34SH2(Lower State), H234S ···32SH2(Lower State), H2 S/D2S/HDS K=0 transitions had been found by Dr. Pankaj Kanti Mandal. F. J Lovas, P. K Mandal and E. Arunan, unpublished work P. K. Mandal, Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert, 43rd Int.Symp. on Molecular Spectroscopy. (1988)

Structure of Hydrogen Sulphide Dimer Derived from K=0 Lines 4.116(4)Å Fitting the K=0 lines, only the distance between two sulphur atoms can be obtained. Absence of K=1 lines indicates, the interaction between two H2S molecules is isotropic. That means the structure still looks like two oranges!!! (average ‘spherical shape’) H2S Dimer : Hydrogen Bonded or van der Waals interaction??? F. J Lovas, P. K Mandal and E. Arunan, unpublished work E. Arunan and D. Mani, Faraday Discuss., 2015, 177, 51

Symmetric/Asymmetric top C6H6···H2O Theory Experiment Asymmetric top Symmetric top Water has little or no barrier to internal rotation about six fold axis of benzene. K=1 lines absent K=1 lines present Diatomic Rotor Symmetric/Asymmetric top Since the intermolecular potential energy surface is expected to be shallow. The hydrogen atoms in the H2S dimer may not have any specific orientations. H. S. Gutowsky, T. Emilsson and E. Arunan, J. Chem. Phys., 99, 4883 (1993) F. J Lovas, P. K Mandal and E. Arunan, unpublished work

K=1 Lines observed for H2S Dimer When Dr. Chris Medcraft mentioned about the possibilities of observing K=1 lines for HDS ···H2S, we started looking again.

K=1 Lines observed for H2S Dimer We have finally found out the K=1 lines for parent isotopologue.

Observed Transitions for H32SH···32SH2 (E1 State) J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3498.5605 0.0025 2 1 2 1 1 1 6991.7730 0.0060 2 0 2 6996.7610 0.0036 2 1 1 1 1 0 7006.0220 0.0062 3 1 3 10486.7555 0.0017 3 0 3 10494.2400 -0.0025 3 1 2 10508.0710 0.0027 4 1 4 13980.6620 -0.0026 4 0 4 13990.6459 -0.0009 4 1 3 14008.9690 -0.0055 5 1 5 17473.1350 -0.0057 5 0 5 17485.6150 -0.0047 5 1 4 17508.3490 -0.0031 6 1 6 20963.8270 6 0 6 20978.8031 0.0028 6 1 5 21005.8220 0.0029 Blue colored lines are K=1 lines

Fitted Constants B /MHz 1752.8788(11) C /MHz 1745.7388(11) DJ /kHz H32SH···32SH2 (E1 State) B /MHz 1752.8788(11) C /MHz 1745.7388(11) DJ /kHz 14.921(11) DJK /kHz -537.46(80) d1 /kHz -0.4886(86) HJK /Hz -508.(14) s /kHz 4.8 # transitions 16 Ab-initio value (97293.25MHz) of the A rotational constant has been used for fitting.

Observed Transitions for H32SH···32SH2 (E2 State) J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3496.1609 0.0035 2 1 2 1 1 1 6985.1597 -0.0010 2 0 2 6991.9510 0.0024 2 1 1 1 1 0 7001.7420 -0.0003 3 1 3 10479.2300 0.0001 3 0 3 10487.0080 -0.0004 3 1 2 10499.2550 -0.2342(e) 4 0 4 13990.6459 -0.0023 4 1 3 13995.6420 0.0003 5 1 5 4 1 4 17462.5527 -0.0001 5 0 5 17473.4680 -0.0025 5 1 4 17493.2586 6 0 6 20964.1353 0.0018 Blue colored lines are K=1 lines (e): excluded from fit

Fitted Constants B /MHz 1753.1004(79) C /MHz 1743.1178(79) DJ /kHz H32SH···32SH2 (E2 State) B /MHz 1753.1004(79) C /MHz 1743.1178(79) DJ /kHz 15.2281(66) DJK /kHz -362.7(16) d1 /kHz -59.81(28) HJK /Hz 1605.(42) h1/Hz 1068.6(56) s/kHz 2.6 # transitions 13 Ab-initio value (97293.25MHz) of the A rotational constant has been used for fitting.

Calculated Constants of Isotopologues DSD···SD2 HSD···SD2 DSD···SDH D H D H D D Calculated Rotational Constants DSD···SD2 HSD···SD2 DSD···SDH A /MHz 49142.17 58761.68 49176.69 B /MHz 1676.83 1709.19 1679.95 C /MHz 1662.42 1690.05 1665.52 Optimizations are performed at MP2/aug-cc-pVDZ

Observed Transitions for DSD···SD2 E1 State E2 State J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3290.5189 -0.0152 2 1 2 1 1 1 6575.6901 -0.0022 2 0 2 6580.7398 0.0011 2 1 1 1 1 0 6587.1789 -0.0141 3 1 3 9862.5498 -0.0025 3 0 3 9870.3021 0.0092 3 1 2 9879.8857 0.0044 4 1 4 13148.2420 0.0008 4 0 4 13158.8634 0.0004 4 1 3 13171.4835 0.0036 5 0 5 16446.1203 -0.0032 5 1 4 16461.6300 0.0047 6 0 6 19731.7480 0.0007 6 1 5 19749.9505 -0.0038 J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3288.7550 -0.0099 2 1 2 1 1 1 6572.8510 -0.0135 2 0 2 6577.2150 0.0077 2 1 1 1 1 0 6582.6610 0.0006 3 0 3 9865.0070 0.0021 3 1 2 9873.2519 0.0047 4 1 4 3 1 3 13144.2565 0.0159 4 0 4 13151.8330 -0.0024 4 1 3 13162.9395 5 1 5 16428.8980 -0.0073 5 0 5 16437.3740 -0.0023 5 1 4 16451.4430 -0.0043 6 0 6 19721.3070 0.0015 6 1 5 19738.4685 0.0026 Blue colored lines are K=1 lines

Fitted Constants B /MHz 1648.1610(28) 1646.895(16) C /MHz DSD ··· SD2(E1 State) DSD··· SD2(E2 State) B /MHz 1648.1610(28) 1646.895(16) C /MHz 1642.4275(28) 1641.923(16) DJ /kHz 13.628(21) 13.426(11) DJK /kHz -192.6(17) -111.8(81) d1 /kHz -0.594(46) -2.31(18) HJK /Hz -2100.(50) 3357.(184) s/kHz 8.7 9.4 # transitions 14 .

Observed signals for HSD···SD2 J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3357.4490 0.0045 2 0 2 6714.5770 0.0019 2 1 1 1 1 0 6722.0485 -0.0027 3 1 3 2 1 2 10065.7175 -0.0038 3 0 3 10071.0780 0.0000 3 1 2 10082.3848 0.0033 4 1 4 13419.5205 0.0024 4 0 4 13426.6380 -0.0013 5 1 5 16772.0794 0.0021 5 0 5 16780.9420 -0.0031 5 1 4 4 1 3 16800.2589 -0.0017 6 1 6 20123.0882 -0.0015 6 0 6 20133.6835 6 1 5 20157.2538 0.0007 Fitted Constants B /MHz 1681.50165(87) C /MHz 1675.99511(87) DJ /kHz 13.0673(81) DJK /kHz -480.48(58) d1 /kHz 0.6505(65) HJK /Hz 830.(10) s/kHz 3.3 # transitions 14 Blue colored lines are K=1 lines

Observed signals for DSD···SDH J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3355.9220 -0.0045 2 1 2 1 1 1 6708.2098 -0.0175 2 0 2 6711.5490 0.0048 2 1 1 1 1 0 6716.3067 -0.0017 3 1 3 10061.5800 0.0023 3 0 3 10066.5440 -0.0004 3 1 2 10074.2004 0.0188 4 1 4 13414.0216 0.0094 4 0 4 13420.6170 -0.0011 4 1 3 13431.6998 -0.0178 5 1 5 16765.2286 0.0032 5 0 5 16773.4560 -0.0005 6 1 6 20114.9078 -0.0043 6 0 6 20124.7510 0.0005 6 1 5 5 1 4 20145.3311 0.0030 Fitted Constants B /MHz 1679.9449(60) C /MHz 1676.0329(60) DJ /kHz 12.8595(59) DJK /kHz -147.5(30) d1 /kHz 4.018(54) HJK /Hz 4159.(54) s/kHz 11.3 # transitions 15 Blue colored lines are K=1 lines

New Progression of Lines J K-1 K+1 Frequency (MHz) Residue 1 0 1 0 0 0 3511.474 -0.001 2 0 2 7022.566 0.008 3 0 3 10532.870 0.010 4 0 4 14041.986 0.003 5 0 5 17549.561 0.007 6 0 6 21055.177 0.013 Fitted Constants (B+C)/2 /MHz 1755.770 DJ /kHz 16.3 s/kHz 7.4 The new progression looks like it belongs to the parent isotopologue.

Summary H32SH···32SH2 (E1) H32SH···32SH2 (E2) D 32SD···32SD2 (E1) H32SD···32S D2 (A1) D32SD···32SDH B /MHz 1752.8788(11) 1753.1004(79) 1648.1610(28) 1646.895(16) 1681.50165(87) 1679.9449(60) C /MHz 1745.7388(11) 1743.1178(79) 1642.4275(28) 1641.923(16) 1675.99511(87) 1676.0329(60) DJ /kHz 14.921(11) 15.2281(66) 13.628(21) 13.426(11) 13.0673(81) 12.8595(59) DJK /kHz -537.46(80) -362.7(16) -192.6(17) -111.8(81) -480.48(58) -147.5(30) d1 /kHz -0.4886(86) -59.81(28) -0.594(46) -2.31(18) 0.6505(65) 4.018(54) HJK /Hz -508.(14) 1605.(42) -2100.(50) 3357.(184) 830.(10) 4159.(54) h1/Hz ----- 1068.6(56) s/kHz 4.8 2.6 8.7 9.4 3.3 11.3 #transitions 16 13 14 15

Probable 33S transitions Hyperfine structure from the 33S quadrupole interaction, observed with Doppler doubling in the J=4–3 transitions(a part of the spectra) for H2S···H233S/ H233S···H2S. Probable Transitions(404 -303) Probable Transitions(606-505) 13966.61 21001.31 13966.7 21001.28 13966.99 21004.35 13966.85 21004.37 13967.109 21006.0 13967.2 21006.1

Conclusions K=1 lines for H32SH···32SH2 /D 32SD···32SD2 /H32SD···32S D2/D32SD···32SDH have been identified and assigned. The natural abundance(0.76%) of 33S is large enough to enable us to observe the transitions of H2S···H233S/ H233S···H2S. The presence of K=1 lines prove that H2S dimer structure has hydrogen bond and the interaction is not isotropic.

Acknowledgments Indian Institute of Science, Bangalore, India for financial support for this trip. Department of Science and Technology(DST), India for funding.

for your kind attention Thank you for your kind attention Picture taken from: http://www.iisc.ac.in/