5.7 Vocabulary CPCTC CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification.

Slides:



Advertisements
Similar presentations
Warm Up Lesson Presentation Lesson Quiz.
Advertisements

Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List the 4 theorems/postulates.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
11. No, need  MKJ   MKL 12. Yes, by Alt Int Angles  SRT   UTR and  STR   URT; RT  RT (reflex) so ΔRST  ΔTUR by ASA 13.  A   D Given  C 
Section 7 : Triangle Congruence: CPCTC
Angle Relationships in Triangles Holt Geometry Lesson Presentation Lesson Presentation Holt McDougal Geometry.
Holt Geometry 4-6 Triangle Congruence: CPCTC Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Lesson 7.1 Right Triangles pp
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry.
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 4-6 Triangle Congruence: CPCTC 4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Warm-up Identify the postulate or theorem that proves the triangles congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
________________ is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof.
4-6 Triangle Congruence: CPCTC Holt Geometry.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ? .
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Holt Geometry 4-3 Congruent Triangles 4-3 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
4-3 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Triangle Congruence Theorems
4-8 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objective Use CPCTC to prove parts of triangles are congruent.
Lesson 9-4 Arcs and Chords (page 344)
Objective! Use CPCTC to prove parts of triangles are congruent.
Congruence, Triangles & CPCTC
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Proving Parts of Triangles using CPCTC
Theorems Involving Parallel Lines and Triangles
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Geometry 4-6 CPCTC C – Corresponding P – Parts of C – Congruent
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective! Use CPCTC to prove parts of triangles are congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm-Up Which congruence shortcut, if any,
CPCTC uses congruent triangles to prove corresponding parts congruent.
4-7 & 10-3 Proofs: Medians Altitudes Angle Bisectors Perpendicular
Vocabulary corresponding angles corresponding sides congruent polygons.
Proofs Section 4.8.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC 4-4
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Objective We will analyze congruent triangles
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
DRILL Prove each pair of triangles are congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Ways to prove triangles congruent:
Warm Up 7.4 Is there enough information to prove that the triangles are congruent? If so, state the reason (SSS, SAS, HL, ASA,
Congruent Triangles. Congruence Postulates.
4-1 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Warm Up Find the measures of the sides of ∆ABC and classify the triangle by its sides. A(-7, 9) B(-7, -1) C(4, -1) AB = 10 BC = 11 AC = √221 The triangle.
Basic Geometry Section 4-6: Triangle Congruence: CPCTC
Presentation transcript:

5.7 Vocabulary CPCTC CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof after you have proven two triangles congruent.

SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent. Use CPCTC AFTER congruent triangles. Remember!

Example 1: Proving Corresponding Parts Congruent Z Given: YW bisects XZ, XY  YZ. Prove: XYW  ZYW

Check It Out! Example 2 Prove: PQ  PS Given: PR bisects QPS and QRS.

Example 3: Using CPCTC in a Proof Prove: MN || OP Given: NO || MP, N  P

Example 4: A and B are on the edges of a ravine. What is AB?

Example 5: ∆RST  ∆LMP. ST = 2x + 10, TR = 3x, MP = x + 30, LM = 2x + 5 find PL

Lesson Quiz: Part I 1. Given: Isosceles ∆PQR, base QR, PA  PB Prove: AR  BQ

Lesson Quiz: Part II 2. Given: X is the midpoint of AC . 1  2 Prove: X is the midpoint of BD.

To prove Midpoint: To prove Bisector: To prove Isosceles: