Cryptography and Network Security Chapter 1

Slides:



Advertisements
Similar presentations
Network Security Chapter 1 - Introduction.
Advertisements

Cryptography and Network Security 2 nd Edition by William Stallings Note: Lecture slides by Lawrie Brown and Henric Johnson, Modified by Andrew Yang.
Cryptography and Network Security Chapter 1
IT 221: Introduction to Information Security Principles Lecture 1: Introduction to IT Security For Educational Purposes Only Revised: August 28, 2002.
Chapter 1 – Introduction
1 Cryptography and Network Security Third Edition by William Stallings Lecturer: Dr. Saleem Al_Zoubi.
Chapter 1 – Introduction The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not.
Computer and Information Security
Computer and Information Security Jen-Chang Liu, 2004
Applied Cryptography for Network Security
Henric Johnson1 Network Security /. 2 Outline Attacks, services and mechanisms Security attacks Security services Methods of Defense A model for Internetwork.
Cryptography and Network Security Chapter 1. Chapter 1 – Introduction The art of war teaches us to rely not on the likelihood of the enemy's not coming,
Cryptography and Network Security Overview & Chapter 1 Fifth Edition by William Stallings Lecture slides by Lawrie Brown Editied by R. Newman.
Bazara Barry1 Security on Networks and Information Systems Bazara I. A. Barry Department of Computer Science – University of Khartoum
Introduction (Pendahuluan)  Information Security.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 1 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Review security basic concepts IT 352 : Lecture 2- part1 Najwa AlGhamdi, MSc – 2012 /1433.
1 Cryptography and Network Security Fourth Edition by William Stallings Lecture slides by Lawrie Brown Changed by: Somesh Jha [Lecture 1]
Cryptography and Network Security Overview & Chapter 1 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Dr. Lo’ai Tawalbeh 2007 INCS 741: Cryptography Chapter 1:Introduction Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus
Cryptography and Network Security Chapter 1
Cryptography and Network Security Overview & Chapter 1 Fifth Edition by William Stallings.
Cryptography and Network Security
Eng. Wafaa Kanakri Second Semester 1435 CRYPTOGRAPHY & NETWORK SECURITY Chapter 1:Introduction Eng. Wafaa Kanakri UMM AL-QURA UNIVERSITY
Network Security Essentials Chapter 1
Network Security Essentials Chapter 1 Fourth Edition by William Stallings (Based on Lecture slides by Lawrie Brown)
Network Security Essentials Chapter 1
Chapter 1 Overview. The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on.
Cryptography and Network Security (CS435) Part One (Introduction)
1 University of Palestine Information Security Principles ITGD 2202 Ms. Eman Alajrami 2 nd Semester
. 1. Computer Security Concepts 2. The OSI Security Architecture 3. Security Attacks 4. Security Services 5. Security Mechanisms 6. A Model for Network.
1 Chapter 1 – Background Computer Security T/ Tyseer Alsamany - Computer Security.
Topic 1 – Introduction Huiqun Yu Information Security Principles & Applications.
Network Security Introduction
Cryptography and Network Security Chapter 1. Background  Information Security requirements have changed in recent times  traditionally provided by physical.
1 Network Security: Introduction Behzad Akbari Fall 2009 In the Name of the Most High.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Information Security Principles and Practices by Mark Merkow and Jim Breithaupt Chapter 1: Why Study Information Security?
1 Network Security Maaz bin ahmad.. 2 Outline Attacks, services and mechanisms Security attacks Security services Security Mechanisms A model for Internetwork.
Prof. Wenguo Wang Network Information Security Prof. Wenguo Wang Tel College of Computer Science QUFU NORMAL UNIVERSITY.
Lecture 1 Introduction Dr. nermin hamza 1. Aim of Course Overview Cryptography Symmetric and Asymmetric Key management Researches topics 2.
Information Security Principles course “Cryptology” Based of: “Cryptography and network Security” by William Stalling, 5th edition. Eng. Mohamed Adam Isak.
Cryptography and Network Security
Information Security Principles and Practices
By Marwan Al-Namari Author: William Stallings
Data & Network Security
Cryptography and Network Security
Information System and Network Security
Information Security.
Data & Network Security
CNET334 - Network Security
Introduction Of Information Security
Information and Network Security
10CS835 Information Security
Cryptography and Network Security Chapter 1
Cryptography and Network Security Chapter 1
Mumtaz Ali Rajput +92 – INFORMATION SECURITY – WEEK 2 Mumtaz Ali Rajput +92 – 301-
Qishi Wu University of Memphis
Cryptography and Network Security
Network Security Ola Flygt Växjö University
Cryptography and Network Security Chapter 1
Cryptography and Network Security Chapter 1
Introduction to Cryptography
Information and Network Security
The OSI Security Architecture
Cryptography and Network Security
Security Mechanisms Network Security.
Security Attacks Network Security.
Cryptography and Network Security Chapter 1
Presentation transcript:

Cryptography and Network Security Chapter 1 Fourth Edition by William Stallings After Lawrie Brown Lecture slides by Lawrie Brown for “Cryptography and Network Security”, 4/e, by William Stallings, Chapter 1 “Introduction”.

Background Information Security requirements have changed in recent times traditionally provided by physical and administrative mechanisms computer use requires automated tools to protect files and other stored information use of networks and communications links requires measures to protect data during transmission The requirements of information security within an organization have undergone two major changes in the last several decades. Before the widespread use of data processing equipment,the security of information felt to be valuable to an organization was provided primarily by physical (eg. rugged filing cabinets with locks) and administrative mechanisms (eg. Personnel screening procedures during hiring process). Growing computer use implies a need for automated tools for protecting files and other information stored on it. This is especially the case for a shared system, such as a time-sharing system, and even more so for systems that can be accessed over a public telephone network, data network, or the Internet. The second major change that affected security is the introduction of distributed systems and the use of networks and communications facilities for carrying data between terminal user and computer and between computer and computer. Network security measures are needed to protect data during their transmission.

Definitions Computer Security - generic name for the collection of tools designed to protect data and to thwart hackers Network Security - measures to protect data during their transmission Internet Security - measures to protect data during their transmission over a collection of interconnected networks Here are some key definitions, note boundaries between them are blurred.

Aspects of Security Security Attack: Any action that compromises the security of information. Security Mechanism: A mechanism that is designed to detect, prevent, or recover from a security attack. Security Service: A service that enhances the security of data processing systems and information transfers. A security service makes use of one or more security mechanisms.

Security Attacks

Security Attacks Interruption: This is an attack on availability Interception: This is an attack on confidentiality Modification: This is an attack on integrity Fabrication: This is an attack on authenticity

Security Goals Confidentiality Integrity Availability

Security Attack any action that compromises the security of information owned by an organization information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems often threat & attack used to mean same thing have a wide range of attacks can focus of generic types of attacks passive active Expand on definition and use of “security attack”, as detailed above. See Stallings Table 1.1 for definitions of threat and attack.

Passive Attacks Have “passive attacks” which attempt to learn or make use of information from the system but does not affect system resources. By eavesdropping on, or monitoring of, transmissions to: + obtain message contents (as shown above in Stallings Figure 1.3a), or + monitor traffic flows Are difficult to detect because they do not involve any alteration of the data.

Active Attacks By modification of data stream to: Also have “active attacks” which attempt to alter system resources or affect their operation. By modification of data stream to: + masquerade of one entity as some other + replay previous messages (as shown above in Stallings Figure 1.4b) + modify messages in transit + denial of service Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks are difficult to detect, measures are available to prevent their success. On the other hand, it is quite difficult to prevent active attacks absolutely, because of the wide variety of potential physical,software,and network vulnerabilities. Instead, the goal is to detect active attacks and to recover from any disruption or delays caused by them.

Security Services Confidentiality (privacy) Authentication (who created or sent the data) Integrity (has not been altered) Non-repudiation (the order is final) Access control (prevent misuse of resources) Availability (permanence, non-erasure) Denial of Service Attacks Virus that deletes files

Security Service enhance security of data processing systems and information transfers of an organization intended to counter security attacks using one or more security mechanisms often replicates functions normally associated with physical documents which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed Consider the role of a security service, and what may be required. Note both similarities and differences with traditional paper documents, which for example: have signatures & dates; need protection from disclosure, tampering, or destruction; may be notarized or witnessed; may be recorded or licensed

OSI Security Architecture ITU-T X.800 “Security Architecture for OSI” defines a systematic way of defining and providing security requirements for us it provides a useful, if abstract, overview of concepts we will study To assess effectively the security needs of an organization and to evaluate and choose various security products and policies, the manager responsible for security needs some systematic way of defining the requirements for security and characterizing the approaches to satisfying those requirements. This is difficult enough in a centralized data processing environment; with the use of local and wide area networks,the problems are compounded. ITU-T Recommendation X.800, Security Architecture for OSI, defines such a systematic approach. The OSI security architecture is useful to managers as a way of organizing the task of providing security.

Security Services X.800: RFC 2828: “a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers” RFC 2828: “a processing or communication service provided by a system to give a specific kind of protection to system resources” Also have a couple of definition of “security services” from relevant standards. X.800 defines a security service as a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers. Perhaps a clearer definition is found in RFC 2828, which provides the following definition: a processing or communication service that is provided by a system to give a specific kind of protection to system resources; security services implement security policies and are implemented by security mechanisms. In computer network engineering, a Request for Comments (RFC) is a memorandum published by the Internet Engineering Task Force (IETF) describing methods, behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems. RFC 2828 (internet security glossary)

Security Services (X.800) Authentication - assurance that the communicating entity is the one claimed Access Control - prevention of the unauthorized use of a resource Data Confidentiality –protection of data from unauthorized disclosure Data Integrity - assurance that data received is as sent by an authorized entity Non-Repudiation - protection against denial by one of the parties in a communication This list includes the various "classic" security services which are traditionally discussed. Note there is a degree of ambiguity as to the meaning of these terms, and overlap in their use. See Stallings Table 1.2 for details of the 5 Security Service categories and the 14 specific services given in X.800.

Security Mechanism feature designed to detect, prevent, or recover from a security attack no single mechanism that will support all services required however one particular element underlies many of the security mechanisms in use: cryptographic techniques hence our focus on this topic Now introduce “Security Mechanism” which are the specific means of implementing one or more security services. Note these mechanisms span a wide range of technical components, but one aspect seen in many is the use of cryptographic techniques.

Methods of Defence Encryption Software Controls (access limitations in a data base, in operating system protect each user from other users) Hardware Controls (smartcard) Policies (frequent changes of passwords) Physical Controls

Security Mechanisms (X.800) specific security mechanisms: encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding, routing control, notarization pervasive security mechanisms: trusted functionality, security labels, event detection, security audit trails, security recovery Some examples of mechanisms from X.800. Note that the “specific security mechanisms” are protocol layer specific, whilst the “pervasive security mechanisms” are not. We will meet some of these mechanisms in much greater detail later. See Stallings Table 1.3 for details of these mechanisms in X.800, and Table 1.4 for the relationship between services and mechanisms.

Model for Network Security In considering the place of encryption, its useful to use the following two models from Stallings section 1.6. The first, illustrated in Figure 1.5, models information flowing over an insecure communications channel, in the presence of possible opponents. Hence an appropriate security transform (encryption algorithm) can be used, with suitable keys, possibly negotiated using the presence of a trusted third party.

Model for Network Security using this model requires us to: design a suitable algorithm for the security transformation generate the secret information (keys) used by the algorithm develop methods to distribute and share the secret information specify a protocol enabling the principals to use the transformation and secret information for a security service This general model shows that there are four basic tasks in designing a particular security service, as listed.

Model for Network Access Security The second, illustrated in Figure 1.6, model is concerned with controlled access to information or resources on a computer system, in the presence of possible opponents. Here appropriate controls are needed on the access and within the system, to provide suitable security. Some cryptographic techniques are useful here also.

Model for Network Access Security using this model requires us to: select appropriate gatekeeper functions to identify users implement security controls to ensure only authorised users access designated information or resources trusted computer systems may be useful to help implement this model Detail here the tasks needed to use this model. Note that trusted computer systems (discussed in Ch 20 can be useful here).

Summary have considered: X.800 standard definitions for: computer, network, internet security X.800 standard security attacks, services, mechanisms models for network (access) security Chapter 1 summary.