Seismic Developments at LASTI LIGO-G Z

Slides:



Advertisements
Similar presentations
Feedback loop (CV changes input) SP Controller Gc Plant Gp Sensor Gs E MV (Manipulated Variable CV Controlled Variable +-+- S.
Advertisements

Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Vibration Isolation Group R. Takahashi (ICRR)Chief T. Uchiyama (ICRR)Payload design H. Ishizaki (NAOJ)Prototype test R. DeSalvo (Caltech)SAS design A.
Adaptive Noise Cancellation: A Panacea M.Evans, R. Adhikari.
LIGO - G R 1 HAM SAS Test Plan at LASTI David Ottaway November 2005 LIGO-G Z.
MAX-PLANCK-INSTITUT FÜR GRAVITATIONSPHYSIK ALBERT-EINSTEIN-INSTITUT Karsten Kötter1 DC Data Analysis SEI/SUS (Suspensions & Seismic Isolation)
Global longitudinal quad damping vs. local damping Brett Shapiro Stanford University 1/32G v13 LIGO.
One Arm Cavity M0 L1 L2 TM M0 L1 L2 TRIPLE QUAD 16m R = 20m, T=1% R = ∞, T=1%  Optimally coupled cavity (no mode matched light reflected back)  Finesse.
E2E school at LLO1  Han2k »Model of the LHO 2k IFO »Designed for lock acquisition study  SimLIGO1 »Model of all LIGO 1 IFOs »Designed for –noise hunting.
LIGO-G M 1 Conceptual Design Review: Initial LIGO Seismic Isolation System Upgrade Introduction Dennis Coyne April 12, 2002.
LIGO-G0200XX-00-M LIGO Laboratory1 Pre-Isolation Dennis Coyne LIGO Laboratory NSF LIGO Annual Review, at MIT 23 October 2002.
G M Advanced R&D1 Seismic Isolation Retrofit Plan for the LIGO Livingston Observatory Dennis Coyne 29 Nov 2001.
Basics of Digital Filters & Sub-band Coding Gilad Lerman Math 5467 (stealing slides from Gonzalez & Woods)
LIGO Magnetic External Pre-Isolator Richard Mittleman, David Ottaway & Gregg Harry April 18, 2003.
LIGO-G DPage 1 Modal Analysis and Feedback Control of HAM MEPI Oct 16, 2002 Lei Zuo Osamah Rifai Samir Nayfeh.
LIGO-G W Commissioning Data on Vibration Isolation & Suspensions Fred Raab 24 October 02.
Investigation of the influence of suspended optic’s motion on LIGO detector sensitivity Sanichiro Yoshida Southeastern Louisiana University.
LIGO-G M 1 Initial LIGO Seismic Isolation System Upgrade Dennis Coyne LIGO Seminar March 29, 2002.
Eurotev Feedback Loop for the mechanical Stabilisation Jacques Lottin* Laurent Brunetti*
Active Seismic Isolation Systems for Enhanced and Advanced LIGO Jeffrey S. Kissel 1 for the LSC 1 Louisiana State University The mechanical system for.
LSC Meeting August ‘04 1 LIGO ADVANCED SYSTEMS TEST INTERFEROMETER (LASTI) Program Update: LSC Meeting, Hanford Dave Ottaway for the LASTI team August.
Suspension Control with Thoughts on Modern Control Brett Shapiro 19 May May GWADW- G – v3.
Implementation of adaptive control algorithm based on SPOC form
Adaptive Optics with Adaptive Filtering and Control Steve Gibson Mechanical and Aerospace Engineering University of California, Los Angeles
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
Towards aLIGO Heirarchical Control Scheme J. Kissel G v31.
Thoughts on short term improvements for Mirror Suspension Control G.Losurdo - P.Ruggi.
CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,
Takanori Sekiguchi External Review Control and tuning of suspension 1 T. Sekiguchi KAGRA 4th External Review.
The purpose of the change of basis matrices is to combine local instruments to sense (or drive ) the platforms rigid body motions along the axis of the.
SUSPENSIONS Pisa S.Braccini C.Bradaschia R.Cavalieri G.Cella V.Dattilo A.Di Virgilio F.Fidecaro F.Frasconi A.Gennai G.Gennaro A.Giazotto L.Holloway F.Paoletti.
ADAPTIVE FILTERING SYSTEM IDENTIFICATION ADAPTIVE NOISE CONTROL ADAPTIVE OPTICS APPLICATIONS Adaptive Optics Identification and Control of Flexible Structures.
Cavity Work at LASTI LSC-VIRGO Meeting, Hannover - 24 th October 2007 Lisa Barsotti and Matthew Evans for the LASTI group G D.
Global longitudinal quad damping vs. local damping Brett Shapiro Stanford University 1/36 LIGO G v15.
Behavior of an inverted pendulum in the Kamioka mine R. Takahashi (NAOJ), A. Takamori (ERI), E. Majorana (INFN) GWADW 2010 We are investigating behavior.
LSC-March  LIGO End to End simulation  Lock acquisition design »How to increase the threshold velocity under realistic condition »Hanford 2k simulation.
Experiments on Noise CharacterizationRoma, March 10,1999Andrea Viceré Experiments on Noise Analysis l Need of noise characterization for  Monitoring the.
CARE / ELAN / EUROTeV Feedback Loop on a large scale quadrupole prototype Laurent Brunetti* Jacques Lottin**
Understanding Cabling Noise in LIGO Chihyu Chen Lafayette College Mentors: Mark Barton Norna Robertson Helpful Researcher:Calum Torrie Co-SURF:Julian Freed-Brown.
New in-air seismic attenuation system for the next generation gravitational wave detector M.R. Blom, A. Bertolini, E. Hennes, A. Schimmel, H.J. Bulten,
Newton’s 2nd Law: Translational Motion
CARE / ELAN / EUROTeV Active stabilization of a mechanical structure Laurent BRUNETTI LAViSta Team LAPP-IN2P3-CNRS,
Advanced LIGO Simulation, 6/1/06 Elba G E 1 ✦ LIGO I experience ✦ FP cavity : LIGO I vs AdvLIGO ✦ Simulation tools ✦ Time domain model Advanced.
Calibration in the Front End Controls Craig Cahillane LIGO Caltech SURF 2013 Mentors: Alan Weinstein, Jamie Rollins Presentation to Calibration Group 8/21/2013.
Linear Dynamic Model for Advanced LIGO Isolation System Wensheng Hua, Brain Lantz, Dan Debra, Jonathan How, Corwin Hardham, Sam Richman, Rana Adhikari,
Professors: Eng. Diego Barral Eng. Mariano Llamedo Soria Julian Bruno
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
Modeling of the Effects of Beam Fluctuations from LIGO’s Input Optics Nafis Jamal Shivanand Sanichiro Yoshida Biplab Bhawal LSC Conference Aug ’05 LIGO-G Z.
Adaptive Control Loops for Advanced LIGO
LIGO-G D Beam Jitter Estimate at the OMC: Enhanced and Advanced LIGO Vuk Mandic LSC Meeting LSU, 08/14/06.
LSC Meeting at LHO LIGO-G E 1August. 21, 2002 SimLIGO : A New LIGO Simulation Package 1. e2e : overview 2. SimLIGO 3. software, documentations.
LIGO-G R LIGO R&D1 Improvement of the MGAS Filter Damping Performance Alberto Stochino University of Pisa, Italy SURF Student Mentor: Dr. Riccardo.
Simulation and Experimental Verification of Model Based Opto-Electronic Automation Drexel University Department of Electrical and Computer Engineering.
LIGO-G Z Adaptive FIRs taking place at Lasti Richard Mittleman Laurent Ruet Brett Shapiro April 2006.
Prototype Sensor Status and Measurements u Sensor Response Measurements u Mechanical Response u Noise Expectations u DAQ Status.
LLRF_05 - CERN, October 10-13, 2005Institute of Electronic Systems Superconductive cavity driving with FPGA controller Tomasz Czarski Warsaw University.
SPIE - WARSAW, August 30, 2005Institute of Electronics Systems, ELHEP Group TESLA Cavity driving with FPGA controller Tomasz Czarski WUT - Institute of.
Type-A SAS Local Control Simulation (Current Status)
LQR Linear Quadratic Regulator
Using Sensor Data Effectively
Design of Stable Power-Recycling Cavities
Way to many People to List
LIGO Detector Commissioning
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
LIGO Detector Commissioning
Bayes and Kalman Filter
HAM SAS Test Plan at LASTI
HAM-SAS Mechanics Status of modeling V.Boschi, V. Sannibale.
Wiener Filtering: A linear estimation of clean signal from the noisy signal Using MMSE criterion.
MODEL DEVELOPMENT FOR HIGH-SPEED RECEIVERS
Presentation transcript:

Seismic Developments at LASTI LIGO-G050184-00-Z Luarent Ruet Richard Mittleman  Lei Zuo March 2005

 OUTLI NE 1) Geophone tilt correction HAM BSC (non-linear bending??) 2) BSC Stack Characterization Resonant Gain  Noise Study 3) Modal Control/Adaptive Filters   4) Estimators 5) HAM Plant Modifications 6) System identification noise subtraction Triple BSC Noise Measurements 7) Future Plans

Tilt Correction The source of tilt can be divided into two categories, inherent and induced.

Geophone Tilt Subtraction Tilt transfer function of an inertial sensor Assumptions The plant is linear The induced angle is proportional to the displacement We can then predict the tilt-induced signal from the geophones

A B Control Strategy Fsts FPS FGeo FTilt FSup STS PS + Geo + Wit Plant () STS Fsts K1 () Ground Output () ()=0 + FPS PS + Input A B + + Geo FGeo + + () () Wit + () Output Plant FTilt FSup K2 Feedback Control Strategy

BSC Transfer Functions

Beam Bending

Blow UP

vs. drive

BSC Stack Transfer Functions From the Support table to the Optics Table

BSC Stack X-Mode

Resonant Gain Results

Adaptive Algorithm e d x FIR-Filter y Plant + - Gradient = FIR filter, of length N, has coefficients h

Simulink Diagram

A B Control Strategy Fsts FPS FGeo FSup STS PS Geo Wit Plant () STS Fsts K1 () Ground () ()=0 + FPS PS + Input A B + Geo FGeo + () () () Wit + Plant Adaptive Filter + + K2 FSup Control Strategy Feedback

HAM Optics Table Results

Modal control

Modal Control Results

Estimator Model - + Ground Noise (w) Sensor Noise (v) Plant Drive (u) Gain K + Model Modal Signals

Estimator Math Where Ce is a selector Matrix Where TFm is the model transfer function if A large K will give A small K will give

Noise Model

Estimator Results

Estimator Model - + Ground Noise (w) Sensor Noise (v) Plant Drive (u) Gain Filter K + Model Modal Signals

F dependant K

Results

Spectrum

Future Estimator Work How Good does the Model Need to Be? How do we optimize the Estimator Gain vs. the Control Gain? Try it on a piece of hardware; the triple pendulum control prototype. Other Ideas?

HAM Table Resonance

Stiffener

Y-Optical table

X–Position Sensors

Noise Subtraction

BSC Vertical Noise

Vertical Noise 2

Horizontal Noise #1

Horizontal Noise Low

Horizontal Noise Mid

Horizontal Noise High

Transfer Function from dSpace to Position Sensors Transfer Function from dSpace to Support Table Geophones Open Loop transfer function Transfer Function from Ground STS to Witness Sensor Transfer Function from dSpace to Witness Sensor Control Equations Closed Loop Transfer Function from ground to witness sensor

THE END