Rate Equations and Order of Reactions

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Angstrom Care 培苗社 Quadratic Equation II
Advanced Piloting Cruise Plot.
1
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
ALGEBRA Number Walls
UNITED NATIONS Shipment Details Report – January 2006.
RXQ Customer Enrollment Using a Registration Agent (RA) Process Flow Diagram (Move-In) Customer Supplier Customer authorizes Enrollment ( )
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Project 2- Stock Option Pricing
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
PP Test Review Sections 6-1 to 6-6
ABC Technology Project
Chapter 6 Reaction Equilibrium in Ideal Gas Mixtures Physical Chemistry Chapter 6.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Enrichment - Rate Equations to Determine Reaction Order The equation for a straight line is: Compare this equation to the rearranged first order rate-law.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Subtraction: Adding UP
Slippery Slope
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Simple Linear Regression Analysis
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Presentation transcript:

Rate Equations and Order of Reactions 14 Rate Equations and Order of Reactions Increasing concentration of reactants can increase the rate of reaction. Is there any mathematical relationship between rate of reaction and concentration of reactants? YES!!!!!!

2NO(g) + 2H2(g)  N2(g) + 2H2O (l) For the reaction: 2NO(g) + 2H2(g)  N2(g) + 2H2O (l) Initial concentration / mol dm-3 Initial rate / mol dm-3 s-1 NO H2 0.0250 0.100 2.4  10-6 0.050 1.2  10-6 0.0125 0.6  10-6 Rate a [H2(g)] when [NO(g)] is constant Rate a [NO2(g)]2 when [H2(g)] is constant Rate a [NO(g)]2 [H2(g)] Rate = k[NO(g)]2 [H2(g)]

Rate Equations and Order of Reactions 14.1 Rate Equations and Order of Reactions

Rate Equation In general, for the reaction: mA + nB  products Rate = 14.1 Rate Equations and Order of Reactions (SB p.25 NB p.8) Rate Equation In general, for the reaction: mA + nB  products Rate = = k [A]x [B]y m n (a rate equation) k = rate constant x = order of reaction with respect to reactant A y = order of reaction with respect to reactant B Overall order of reaction = x + y

Rate Equation mA + nB  products Rate = k [A]x [B]y 14.1 Rate Equations and Order of Reactions (SB p.25) Rate Equation mA + nB  products Rate = k [A]x [B]y x and y are determined experimentally. x and y may NOT equal to m and n. x and y may not be whole numbers!!! Rate of reaction is independent of products’ concentration

Order of Reactions Usually integers (0, 1, 2, … …) If x = 1 14.1 Rate Equations and Order of Reactions (SB p.26) Order of Reactions Do Class Examples on p. 8 Usually integers (0, 1, 2, … …) If x = 1  first order with respect to reactant A If y = 2  second order with respect to reactant B The overall reaction is a third order reaction.

Rate Equation Rate = k [A]x [B]y 14.1 Rate Equations and Order of Reactions (SB p.25 NB p. 8) Rate Equation Rate = k [A]x [B]y log rate = log k + x log[A] + y log[B] If B is kept large excess, its change in concentration will be negligible when compared with A.  log[B] ~ constant  log rate = c’ + x log[A]  when is log rate plotted against log[A]  straight line with slope = x

Zeroth, First and Second Order Reactions 14.2 Zeroth, First and Second Order Reactions

For the following reaction: A  product [A] mol dm-3 Time (s) 1.00 0.80 10 0.70 20 0.65 30 0.53 40 : How can we find out the order of reaction with respects to [A]?

Zeroth Order Reactions 14.2 Zeroth, First and Second Order Reactions (SB p.27 NB p.10) Zeroth Order Reactions A  products Rate = k [A]0 = k e.g. CH3COCH3(aq) + I2(aq) + H+(aq)  CH3COCH2I(aq) + I-(aq) + 2H+(aq) Rate = k[CH3COCH3(aq)][H+(aq)][I2(aq)]0 The rate of reaction is independent of [I2]!!! This means if we keep [CH3COCH3(aq)] and [H+(aq)] constant then measure the initial rate with various [I2(aq)], we will get the same initial rate.

Zeroth Order Reactions 14.2 Zeroth, First and Second Order Reactions (SB p.27) Zeroth Order Reactions [I2(aq)]

Zeroth Order Reactions WHY??? 14.2 Zeroth, First and Second Order Reactions (SB p.27) Zeroth Order Reactions WHY??? The reaction is a multi-step reaction. Only the slowest step affect the overall reaction rate. A B C D Iodine is not involved in the slowest step of the reaction.

A Plot of [A] against time will give a straight line 14.5 Determination of Simple Rate Equations from Integrated Rate Equations (SB p.37) Zeroth Order Reaction A Plot of [A] against time will give a straight line A  product Rate equation is: [A] = -kt + [A]0

First Order Reaction e.g Decomposition of H2O2(aq) to H2O and O2 14.2 Zeroth, First and Second Order Reactions (SB p.28) First Order Reaction e.g Decomposition of H2O2(aq) to H2O and O2 2H2O2(aq)  2H2O(l) + O2(g) Rate = k [H2O2(aq)] Though the stoichiometric coefficient of H2O2(aq) is 2 Order of reaction with respect to H2O2(aq) is 1 (determined experimentally)

A Plot of ln [A] against time will give a straight line 14.5 Determination of Simple Rate Equations from Integrated Rate Equations (SB p.37 NB p. 9)) First Order Reaction A Plot of ln [A] against time will give a straight line A  product Rate equation is: In A = -k1t + In [A]0

Half-life of First Order reaction 14.5 Determination of Simple Rate Equations from Integrated Rate Equations (SB p.38) Half-life of First Order reaction The time taken for half of the reactant to be converted to the product is known as the half-life of the reaction. After time t, [A] = [A]0 t is called the half life of the reaction.

Half-life of First Order Reaction 14.5 Determination of Simple Rate Equations from Integrated Rate Equations (SB p.38) Half-life of First Order Reaction ln[A] = -k1t + ln[A]0 k1t = ln[A]0 - ln[A] If t = half-life (t0.5), then [A]0 = 2[A]: k1t0.5 = ln 2 t0.5 = constant

Half-life of a First Order Reaction 14.5 Determination of Simple Rate Equations from Integrated Rate Equations (SB p.39) Half-life of a First Order Reaction For a first order reaction: Half-life is a constant Do Class Examples 1, 3 on p.10

Second Order Reaction A  product Rate equation is: 14.5 Determination of Simple Rate Equations from Integrated Rate Equations (SB p.40 NB p.11) Second Order Reaction A plot of 1/[A] vs time will give a straight line A  product Rate equation is: Integrating the above rate equation, obtain:

Summary Plot a second graph of vs time Do Q. 5 on p. 77 Do Q. 14 on p. 80 Q. 13 (more difficult) Do Q. 3 on NB p.17 Q. 2 on NB p. 21 Summary Steps to determine the order of reaction Plot a concentration-time graph  a straight line  zeroth order  a curve with constant half life  first order Confirmation: ln[A] vs time  straight line Plot a second graph of vs time  a straight line  second order

Determination of Simple Rate Equations by Graphical Method 14.4 – 14.5 Determination of Simple Rate Equations by Graphical Method Notes p. 18

log (rate)-log (concentration) Graph 14.4 Determination of Simple Rate Equations from Differential Rate Equations (SB p.32) log (rate)-log (concentration) Graph rate = k[A]n log (rate) = n log [A] + log k Plotting log (rate) against log [A], a straight line is obtained for any orders Slope of straight line = Order of reaction (n) y-intercept = log k Do Q. 1 on NB p. 16

We need to plot two graphs: (1) [A] vs time to find the rate at different [A] (by slope to the curve) (2) log (rate) vs log[A] to find the order and k

14.4 Determination of Simple Rate Equations from Differential Rate Equations (SB p.36) Check Point 14-4 Decide which curve in the following graph corresponds to (i) a zeroth order reaction; (ii) a first order reaction. (i) (3) (ii) (2)

Isolation technique When two or more substances react: 14.4 Determination of Simple Rate Equations from Differential Rate Equations (SB p.33) Do Q. 1, 3 on p. 27 Do Q 13 on p.80 Isolation technique When two or more substances react: A + B  products Order of reaction with respect to reactant A can be found by keeping concentration of B constant (by using much excess B – isolation technique) Rate = k[A]x[B]y  Rate = k’ [A]x

The END

Q.13 on p. 80 Products (not reactants) t(s) v(cm3) 5 33 10 56 15 73 25 92 3600 110 5400 ln (a) vol. of N2 (a) in reactant/cm3 110 77 54 37 18