EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
ECE 875: Electronic Devices
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
ECE 333 Linear Electronics
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Professor Ronald L. Carter
P-N Junctions ECE 663.
Lecture-12 P-N Junction • Fabrication of a p-n junction
Chapter 5. pn Junction Electrostatics
Announcements HW1 is posted, due Tuesday 9/4
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Depletion Region ECE 2204.
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
ECE 333 Linear Electronics
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
EE130/230A Discussion 5 Peng Zheng.
Professor Ronald L. Carter
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
pn Junction Electrostatics
PN Junction Electrostatics
pn Junction Electrostatics
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 3 OUTLINE Semiconductor Basics (cont’d) PN Junction Diodes
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Professor Ronald L. Carter
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
QUIZ 4 SUPPORT Key Slides From Class Presentations 1 April 2015
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

Band diagram for p+-n jctn* at Va = 0 Ec qVbi = q(fn - fp) qfp < 0 EFi Ec EFP EFN Ev EFi qfn > 0 *Na > Nd -> |fp| > fn Ev p-type for x<0 n-type for x>0 x -xpc -xp xn xnc L11 27Sep10

Depletion approx. charge distribution +Qn’=qNdxn +qNd [Coul/cm2] -xp x -xpc xn xnc -qNa Due to Charge neutrality Qp’ + Qn’ = 0, => Naxp = Ndxn Qp’=-qNaxp [Coul/cm2] L11 27Sep10

Induced E-field in the D.R. Ex p-contact N-contact O - O + p-type CNR n-type chg neutral reg O - O + O - O + Exposed Acceptor Ions Depletion region (DR) Exposed Donor ions W x -xpc -xp xn xnc L11 27Sep10

Soln to Poisson’s Eq in the D.R. Ex -xp xn x -xpc xnc -Emax L11 27Sep10

Soln to Poisson’s Eq in the D.R. (cont.) L11 27Sep10

Effect of V  0 Define an external voltage source, Va, with the +term at the p-type contact and the -term at the n-type contact For Va > 0, the Va induced field tends to oppose Ex due to DR For Va < 0, the Va induced field tends to add to Ex due to DR Will consider Va < 0 now L11 27Sep10

Band diagram for p+-n jctn* at Va  0 Ec q(Va) q(Vbi-Va) qfp < 0 EFi Ec EFP EFN Ev EFi qfn > 0 *Na > Nd -> |fp| > fn Ev p-type for x<0 n-type for x>0 x -xpc -xp xn xnc L11 27Sep10

Soln to Poisson’s Eq in the D.R. Ex W(Va-dV) W(Va) -xp xn x -xpc xnc -Emax(V) -Emax(V-dV) L11 27Sep10

Effect of V  0 L11 27Sep10

Effect of V  0 Lever rule, Naxp = Ndxn, still applies Vbi = Vt ln(NaNd/ni2), still applies W = xp + xn, still applies Neff = NaNd/(Na + Nd), still applies Q’n = qNdxn = -Q’p = qNaxp, still applies For Va < 0, W increases and Emax increases L11 27Sep10

One-sided p+n or n+p jctns If p+n, then Na >> Nd, and NaNd/(Na + Nd) = Neff --> Nd, and W --> xn, DR is all on lightly d. side If n+p, then Nd >> Na, and NaNd/(Na + Nd) = Neff --> Na, and W --> xp, DR is all on lightly d. side The net effect is that Neff --> N-, (- = lightly doped side) and W --> x- L11 27Sep10

Depletion Approxi- mation (Summary) For the step junction defined by doping Na (p-type) for x < 0 and Nd, (n-type) for x > 0, the depletion width W = {2e(Vbi-Va)/qNeff}1/2, where Vbi = Vt ln{NaNd/ni2}, and Neff=NaNd/(Na+Nd). Since Naxp=Ndxn, xn = W/(1 + Nd/Na), and xp = W/(1 + Na/Nd). L11 27Sep10

n x xn Nd Debye length The DA assumes n changes from Nd to 0 discontinuously at xn, likewise, p changes from Na to 0 discontinuously at -xp. In the region of xn, Poisson’s eq is E = r/e --> dEx/dx = q(Nd - n), and since Ex = -df/dx, we have -d2f/dx2 = q(Nd - n)/e to be solved L11 27Sep10

Debye length (cont) Since the level EFi is a reference for equil, we set f = Vt ln(n/ni) In the region of xn, n = ni exp(f/Vt), so d2f/dx2 = -q(Nd - ni ef/Vt), let f = fo + f’, where fo = Vt ln(Nd/ni) so Nd - ni ef/Vt = Nd[1 - ef/Vt-fo/Vt], for f - fo = f’ << fo, the DE becomes d2f’/dx2 = (q2Nd/ekT)f’, f’ << fo L11 27Sep10

Debye length (cont) So f’ = f’(xn) exp[+(x-xn)/LD]+con. and n = Nd ef’/Vt, x ~ xn, where LD is the “Debye length” L11 27Sep10

13% < d < 28% => DA is OK Debye length (cont) LD estimates the transition length of a step-junction DR (concentrations Na and Nd with Neff = NaNd/(Na +Nd)). Thus, For Va=0, & 1E13 < Na,Nd < 1E19 cm-3 13% < d < 28% => DA is OK L11 27Sep10

Charge neutrality => Qp’ + Qn’ = 0, => Naxp = Ndxn Junction C (cont.) r +Qn’=qNdxn +qNd dQn’=qNddxn -xp x -xpc xn xnc -qNa Charge neutrality => Qp’ + Qn’ = 0, => Naxp = Ndxn dQp’=-qNadxp Qp’=-qNaxp L11 27Sep10

Junction Capacitance The junction has +Q’n=qNdxn (exposed donors), and (exposed acceptors) Q’p=-qNaxp = -Q’n, forming a parallel sheet charge capacitor. L11 27Sep10

Junction C (cont.) So this definition of the capacitance gives a parallel plate capacitor with charges dQ’n and dQ’p(=-dQ’n), separated by, L (=W), with an area A and the capacitance is then the ideal parallel plate capacitance. Still non-linear and Q is not zero at Va=0. L11 27Sep10

Junction C (cont.) This Q ~ (Vbi-Va)1/2 is clearly non-linear, and Q is not zero at Va = 0. Redefining the capacitance, L11 27Sep10

Junction C (cont.) The C-V relationship simplifies to L11 27Sep10

Junction C (cont.) If one plots [Cj]-2 vs. Va Slope = -[(Cj0)2Vbi]-1 vertical axis intercept = [Cj0]-2 horizontal axis intercept = Vbi Cj-2 Vbi Va Cj0-2 L11 27Sep10