Magnetic, structural and electronic properties of LaFeAsO1-xFx

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
NMR Studies of Metal-Insulator Transitions Leo Lamontagne MATRL286K December 10 th, 2014.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Crystal Structural Behavior of CoCu₂O₃ at High Temperatures April Jeffries*, Ravhi Kumar, and Andrew Cornelius *Department of Physics, State University.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Semiconductors n D*n If T>0
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Magnetism in Azurite Studied by Muon Spin Rotation (a status report) M. Kraken, S. Süllow and F.J. Litterst IPKM, TU Braunschweig A.U.B. Wolter, IFW Dresden.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
NMR evidence for spatial correlations between spin and charge order in (La,Eu) 2-x Sr x CuO 4 Nicholas Hans-Joachim Grafe, Los Alamos.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
3 He NMR in Aerogel Yu. Bunkov H. Godfrin E. Collin A.S. Chen D. Cousins R. Harakaly S. Triqueneaux J. Sauls J. Parpia W. Halperin Yu. Mukharskiy V. Dmitriev.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
An Introduction to Fe-based superconductors
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Superconducting properties in filled-skutterudite PrOs4Sb12
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
The iron-pnictide/chalcogenide (Fe-Pn/Ch) compounds have attracted intense interest recently, largely due to the observation of high-temperature superconductivity.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Superconductivity and Superfluidity The Microscopic Origins of Superconductivity The story so far -what do we know about superconductors?: (i) Superconductors.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Magnetization dynamics in dipolar chromium BECs
Applications of the Canonical Ensemble: Simple Models of Paramagnetism
Search for Novel Quantum Phases in
University of PAVIA, Italy
Giant Superconducting Proximity Effect in Composite Systems Chun Chen and Yan Chen Dept. of Physics and Lab of Advanced Materials, Fudan University,
Search of a Quantum Critical Point in High Tc Superconductors
Interplay of disorder and interactions
Applications of the Canonical Ensemble:
Experimental Evidences on Spin-Charge Separation
Special Romp session, LT25
75As NQR Studies on LaFeAsO1-y and NdFeAsO0.6
Evidence for fully gapped superconductivity from microwave penetration depth measurements in PrFeAsO1-y single crystals K. Hashimoto1, T. Shibauchi1,
Where are the superconductors?
Phase diagram of s-wave SC Introduction
A magnetic analog of the isotope effect in cuprates
R. L. Greene Electron-doped Cuprates University of Maryland
Fig. 2: Gap symmetry: Comparison with Ce doping
High Temperature Superconductivity
ARPES study of metal-insulator transition in Sr2IrO4
第27回応用物理学科セミナー 日時: 10月25日(火) 16:00 – 17:30 場所:葛飾キャンパス研究棟8F第1セミナー室
Neutron studies of iron-based superconductors
Ginzburg-Landau theory
Presentation transcript:

Magnetic, structural and electronic properties of LaFeAsO1-xFx Rüdiger Klingeler Leibniz Inst. for Solid State and Materials Research IFW Dresden Today: Original Abstract: NMR mSR, M, r Pulsed field m-wave, M Optics Neutrons Magnetisation H. Grafe et al., PRL 101, 047003 (‘08) H.H. Klauss et al., PRL, in print H. Luetkens et al., PRL, accepted G. Fuchs et al., PRL, accepted A. Narduzzo et al., Phys. Rev. B, in print S.-L. Drechsler et al., arXiv:0805.1321 H. Luetkens et al., arXiv:0806.3533 S.A.J. Kimber et al. arXiv:0807.4441 R. Klingeler et al., arXiv:0808.0708

Our samples non-magnetic H. Luetkens et al., arXiv:0806.3533

LaFeAsO1-xFx C. Hess et al.

LaFeAsO1-xFx c(T) ~ T: AFM correlations? Sample degrades >500K R. Klingeler et al., arXiv:0808.0708

LaFeAsO1-xFx c(T) ~ T: pseudogap vs. AFM correlations Slope dc/dT const. AFM correlations in SC samples or: x-independent large pseudogap R. Klingeler et al., arXiv:0808.0708

LaFeAsO1-xFx c(T) ~ T: pseudogap vs. AFM correlations Slope dc/dT const. AFM correlations in SC samples or: x-independent large pseudogap R. Klingeler et al., arXiv:0808.0708

PrFeAsO: Thermal Expansion

PrFeAsO: Thermal Expansion La  Pr Field dependent structural changes below TN (no field effect in LaFeAsO)

Acknowledgements Cooperations: H.H. Klauss et al. TU Dresden B. Büchner Synthesis: G. Behr, J. Werner, M. Deutschmann, R. Müller, R. Pichl, … Theory: S.L. Drechsler, H. Eschrig, K. Koepernick, …. Transport : A. Kondrat, C. Hess et al. M, Thermodynamics: N. Leps, S. Gass, L. Wang et al. NMR: H. Grafe, G. Lang, D. Paar, V. Kataev et al. Diffraction: J. Hamann-Borrero Pulsed field: G. Fuchs et al. Microwave absorption: A. Narduzzo et al. Cooperations: H.H. Klauss et al. TU Dresden J. Litterst et al TU Braunschweig H. Luetkens et al. PSI Villingen A. de Visser et al. U Amsterdam M. Braden et al. U Köln I. Eremin et al. MPI PKS Dresden A. Vassiliev et al. Moscow State University

LaFeAsO: Pressure dependence Negative p-dependence of TN Coll.: M. Braden, U Köln A. De Visser, U. Amsterdam

Transport Resistivity Clearly two features in the second derivative Check with Christian T_dep something astonishingly similar to cuprates Clearly two features in the second derivative Anomaly at T = 150 K survives for x = 0.05 ~T2, ~T depending on doping and temperature

Susceptibility Phase Transition Kink around 140 K due to afm correlations Derivative shows two peak structure (magnetic and structural phase transition) Shift towards lower energies Decreasse of magnetization at the kink

Mößbauer/ZF-mSR Clear oscilations below TN Clear line splitting at TN AFM arises from a spin density wave of the conduction electrons Clear line splitting at TN Effective moment m=0.25mB << 2

mSR TF mSR, x = 0.1 ZF mSR, x = 0.1 Magnetism suppressed Relaxation rate s ~ l-2 ~ n/m* → lab(0) = 254 nm

Spin lattice relaxation NMR 75As, LaO0.9F0.1FeAs Knight shift Spin lattice relaxation Knight shift: 1) Pseudogap-like density suppression 2) Spin-singlet pairing T1-1 ~ T3 for T < Tc → line nodes

LaFeAsO1-xFx Weak localization-like behavior at low T for x<0.05 Superconductivity for x>0.04 Anomaly at T = 150 K for nonsuperconducting samples Maximum above Tc for sc samples remnant from upturn Change from linear T-dependence in the normal state to quadratic Tc decreases for high doping C. Hess et al.

LaFeAsO1-xFx R. Klingeler et al., arXiv:0808.0708