Regulation of Gene Expression

Slides:



Advertisements
Similar presentations
Regulation of Gene Expression
Advertisements

Differential Gene Expression
Regulation of Gene Expression
Day 2! Chapter 15 Eukaryotic Gene Regulation Almost all the cells in an organism are genetically identical. Differences between cell types result from.
Differential Expression of Genes  Prokaryotes and eukaryotes precisely regulate gene expression in response to environmental conditions  In multicellular.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Eukaryotic DNA.
Control of Gene Expression Eukaryotes. Eukaryotic Gene Expression Some genes are expressed in all cells all the time. These so-called housekeeping genes.
Regulation of Gene Expression
 Eukaryotic Gene Expression.  Transduction  Transformation.
Regulation of Gene Expression
Regulation of Gene Expression
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: How Eukaryotic Genomes Work and Evolve Two features of eukaryotic genomes.
Chapter 18-Gene Expression
REVIEW SESSION 5:30 PM Wednesday, September 15 5:30 PM SHANTZ 242 E.
Control of Gene Expression Chapter Proteins interacting w/ DNA turn Prokaryotic genes on or off in response to environmental changes  Gene Regulation:
(distal control elements)
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
AP Biology Discussion Notes 2/25/2015. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria (Prokaryotes)
GENE REGULATION RESULTS IN DIFFERENTIAL GENE EXPRESSION, LEADING TO CELL SPECIALIZATION Eukaryotic DNA.
Gene Regulation.
AP Biology Discussion Notes Monday 3/14/2016. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Eukaryotic Gene Regulation
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Gene Expression: Prokaryotes and Eukaryotes AP Biology Ch 18.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Eukaryotic Gene Regulation
Regulation of Prokaryotic and Eukaryotic Gene Expression
Chapter 15 Regulation of Gene Expression.
Regulation of Gene Expression
Chapter 15 Gene Control.
Regulation of Gene Expression
Figure 18.3 trp operon Promoter Promoter Genes of operon DNA trpR trpE
Regulation of Gene Expression
Gene Expression.
Regulation of Gene Expression
Chapter 15 Controls over Genes.
Regulation of Gene Expression by Eukaryotes
Regulation of Gene Expression
Gene Regulation.
Ch 18: Regulation of Gene Expression
Gene Expression.
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Concept 18.2: Eukaryotic gene expression can be regulated at any stage
Chapter 15 Gene Control.
Regulation of Gene Expression
Coordinately Controlled Genes in Eukaryotes
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Gene Expression AP Biology.
How are genes turned on & off?
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
Objective 3: TSWBAT recognize the processes by which bacteria respond to environmental changes by regulating transcription.
Eukaryotic Gene Regulation
Regulation of Gene Expression
Presentation transcript:

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences in cell types RNA molecules play many roles in regulating gene expression in eukaryotes

Concept 18.1: Bacteria often respond to environmental change by regulating transcription Natural selection has favored bacteria that produce only the products needed by that cell A cell can regulate the production of enzymes by feedback inhibition or by gene regulation Gene expression in bacteria is controlled by the operon model

Operons: The Basic Concept A cluster of functionally related genes can be under coordinated control by a single on-off “switch” The regulatory “switch” is a segment of DNA called an operator usually positioned within the promoter An operon is the entire stretch of DNA that includes the operator, the promoter, and the genes that they control

The operon can be switched off by a protein repressor The repressor prevents gene transcription by binding to the operator and blocking RNA polymerase The repressor is the product of a separate regulatory gene

(a) Lactose absent, repressor active, operon off Fig. 18-4 Regulatory gene Promoter Operator DNA lacI lacZ No RNA made 3 mRNA RNA polymerase 5 Active repressor Protein (a) Lactose absent, repressor active, operon off lac operon DNA lacI lacZ lacY lacA RNA polymerase Figure 18.4 The lac operon in E. coli: regulated synthesis of inducible enzymes For the Cell Biology Video Cartoon Rendering of the lac Repressor from E. coli, go to Animation and Video Files. 3 mRNA mRNA 5 5 -Galactosidase Permease Protein Transacetylase Allolactose (inducer) Inactive repressor (b) Lactose present, repressor inactive, operon on

The lac operon is an inducible operon and contains genes that code for enzymes used in the hydrolysis and metabolism of lactose By itself, the lac repressor is active and switches the lac operon off A molecule called an inducer inactivates the repressor to turn the lac operon on

Chromatin modification Fig. 18-6a Signal NUCLEUS Chromatin Chromatin modification DNA Gene available for transcription Gene Transcription RNA Exon Primary transcript Intron Figure 18.6 Stages in gene expression that can be regulated in eukaryotic cells RNA processing Tail mRNA in nucleus Cap Transport to cytoplasm CYTOPLASM

Transport to cellular destination Fig. 18-6b CYTOPLASM mRNA in cytoplasm Translation Degradation of mRNA Polypeptide Protein processing Active protein Degradation of protein Figure 18.6 Stages in gene expression that can be regulated in eukaryotic cells Transport to cellular destination Cellular function

Regulation of Chromatin Structure Genes within highly packed heterochromatin are usually not expressed Chemical modifications to histones and DNA of chromatin influence both chromatin structure and gene expression

Histone Modifications In histone acetylation, acetyl groups are attached to positively charged lysines in histone tails This process loosens chromatin structure, thereby promoting the initiation of transcription The addition of methyl groups (methylation) can condense chromatin; the addition of phosphate groups (phosphorylation) next to a methylated amino acid can loosen chromatin

(distal control elements) Fig. 18-8-3 Poly-A signal sequence Enhancer (distal control elements) Proximal control elements Termination region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter Transcription Primary RNA transcript Exon Intron Exon Intron Exon Cleaved 3 end of primary transcript 5 RNA processing Intron RNA Poly-A signal Figure 18.8 A eukaryotic gene and its transcript Coding segment mRNA 3 Start codon Stop codon 5 Cap 5 UTR 3 UTR Poly-A tail

The Roles of Transcription Factors To initiate transcription, eukaryotic RNA polymerase requires the assistance of proteins called transcription factors General transcription factors are essential for the transcription of all protein-coding genes In eukaryotes, high levels of transcription of particular genes depend on control elements interacting with specific transcription factors

Enhancers and Specific Transcription Factors Proximal control elements are located close to the promoter Distal control elements, groups of which are called enhancers, may be far away from a gene or even located in an intron

Promoter Activators Gene DNA Enhancer Fig. 18-9-3 Promoter Activators Gene DNA Distal control element Enhancer TATA box General transcription factors DNA-bending protein Group of mediator proteins RNA polymerase II Figure 18.9 A model for the action of enhancers and transcription activators RNA polymerase II Transcription initiation complex RNA synthesis

Animation: Initiation of Transcription An activator is a protein that binds to an enhancer and stimulates transcription of a gene Bound activators cause mediator proteins to interact with proteins at the promoter Animation: Initiation of Transcription

Effects on mRNAs by MicroRNAs and Small Interfering RNAs MicroRNAs (miRNAs) are small single-stranded RNA molecules that can bind to mRNA These can degrade mRNA or block its translation

The phenomenon of inhibition of gene expression by RNA molecules is called RNA interference (RNAi) RNAi is caused by small interfering RNAs (siRNAs) siRNAs and miRNAs are similar but form from different RNA precursors

Chromatin Remodeling and Silencing of Transcription by Small RNAs siRNAs play a role in heterochromatin formation and can block large regions of the chromosome Small RNAs may also block transcription of specific genes

Protein processing and degradation Fig. 18-UN4 Chromatin modification Transcription • Genes in highly compacted chromatin are generally not transcribed. • Regulation of transcription initiation: DNA control elements bind specific transcription factors. • Histone acetylation seems to loosen chromatin structure, enhancing transcription. Bending of the DNA enables activators to contact proteins at the promoter, initiating transcription. • DNA methylation generally reduces transcription. • Coordinate regulation: Enhancer for liver-specific genes Enhancer for lens-specific genes Chromatin modification Transcription RNA processing • Alternative RNA splicing: RNA processing Primary RNA transcript mRNA degradation Translation mRNA or Fig. 18-UN4 Protein processing and degradation Translation • Initiation of translation can be controlled via regulation of initiation factors. mRNA degradation • Each mRNA has a characteristic life span, determined in part by sequences in the 5 and 3 UTRs. Protein processing and degradation • Protein processing and degradation by proteasomes are subject to regulation.

Gene Regulation